
CodeArts Repo

User Guide

Issue 01

Date 2023-09-05

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to "Vul. Response Process". For
details about the policy, see the following website:https://www.huawei.com/en/psirt/vul-response-process
For enterprise customers who need to obtain vulnerability information, visit:https://
securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Overview..1

2 Git Installation and Configuration.. 5
2.1 Installing and Configuring Git.. 5
2.2 Installing Git Bash for Windows...5
2.3 Installing TortoiseGit for Windows.. 6
2.4 Installing Git for Linux... 8
2.5 Installing Git for macOS... 8

3 Setting SSH Key or HTTPS Password for CodeArts Repo Repository.......................... 9
3.1 Overview.. 9
3.2 SSH Keys.. 10
3.3 HTTPS Password.. 13

4 Migrating Data to CodeArts Repo...16
4.1 Overview.. 16
4.2 Migrating an SVN Repository to CodeArts Repo... 16
4.3 Importing a Remote Git Repository to CodeArts Repo..20
4.4 Uploading Local Code to CodeArts Repo... 23

5 Creating a CodeArts Repo Repository.. 25
5.1 Overview.. 25
5.2 Creating an Empty Repository..26
5.3 Creating a Repository Using a Template.. 29
5.4 Importing an External Repository... 31
5.5 Forking a Repository.. 33

6 Associating the CodeArts Repo Repository... 37

7 Cloning or Downloading Code from CodeArts Repo to a Local PC...........................40
7.1 Overview.. 40
7.2 Using SSH to Clone Code from CodeArts Repo to a Local PC.. 40
7.3 Using HTTPS to Clone Code from CodeArts Repo to a Local Computer...44
7.4 Downloading a Code Package on a Browser.. 48

8 Using CodeArts Repo.. 49
8.1 Viewing the Repository List... 49

CodeArts Repo
User Guide Contents

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. iii

8.2 Viewing Repository Details.. 50
8.3 Viewing Repository Homepage..52
8.4 Managing Code Files... 54
8.4.1 Managing Files... 54
8.4.2 Managing Commits.. 59
8.4.3 Managing Branches.. 59
8.4.4 Managing Tags... 70
8.4.5 Managing Comparison.. 76
8.5 Managing MRs... 77
8.5.1 Managing MRs... 77
8.5.2 Resolving Code Conflicts in an MR..84
8.5.3 Detailed Description of Review Comments Gate... 91
8.5.4 Detailed Description of Pipeline Gate.. 92
8.5.5 Detailed Description of E2E Ticket Number Association Gate.. 93
8.5.6 Detailed Description of Review Gate..94
8.5.7 Detailed Description of Approval Gate.. 96
8.6 Viewing Review Records of a Repository..97
8.7 Viewing Associated Work Items.. 99
8.7.1 Introduction... 99
8.7.2 Commit Association... 102
8.8 Viewing Repository Statistics..106
8.9 Viewing Activities... 107
8.10 Managing Repository Members.. 107
8.10.1 IAM Users, Project Members, and Repository Members...108
8.10.2 Configuring Member Management... 108
8.10.3 Repository Member Permissions... 111

9 Configuring CodeArts Repo.. 121
9.1 General Settings.. 121
9.1.1 Repository Information... 121
9.1.2 Notifications..122
9.2 Repository Management..124
9.2.1 Repositories... 124
9.2.2 Space Freeing... 127
9.2.3 Synchronization... 127
9.2.4 Submodules...128
9.2.5 Repository Backup.. 131
9.3 Policy Settings..132
9.3.1 Protected Branches... 132
9.3.2 Protected Tags.. 133
9.3.3 Commit Rules... 134
9.3.4 Merge Requests... 139
9.4 Service Integration... 144

CodeArts Repo
User Guide Contents

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. iv

9.4.1 E2E Settings.. 144
9.4.2 Webhooks.. 149
9.5 Security Management...151
9.5.1 Deploy Keys...151
9.5.2 IP Address Whitelists..151
9.5.3 Risky Operations..154
9.5.4 Watermarks...154
9.5.5 Repository Locking... 155
9.5.6 Audit Logs.. 156

10 Submitting Code to the CodeArts Repo.. 157
10.1 Creating a Commit.. 157
10.2 Transmitting and Storing a File in Encryption Mode...160
10.3 Viewing Commit History..170
10.4 Pushing Code to CodeArts Repo Using Eclipse.. 171

11 More About Git..183
11.1 Using the Git Client... 183
11.2 Setting Password-Free Access via HTTPS.. 186
11.3 Using the TortoiseGit Client... 188
11.4 Use Cases on the Git Client.. 193
11.4.1 Uploading and Downloading Code.. 193
11.4.2 Committing Letter Case Changes in File Names to the Server.. 194
11.4.3 Setting the Line Ending Conversion... 194
11.4.4 Committing Hidden Files... 195
11.4.5 Pushing a File That Has Been Changed on the Server.. 195
11.5 Common Git Commands... 196
11.6 Using Git LFS... 202
11.7 Git Workflows..204
11.7.1 Overview.. 204
11.7.2 Centralized Workflow..204
11.7.3 Branch Development Workflow.. 205
11.7.4 GitFlow... 206
11.7.5 Forking Workflow... 208

CodeArts Repo
User Guide Contents

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. v

1 Overview

CodeArts Repo is a distributed version management platform that uses the Git
workflow. It provides functions such as security management, member and
permission management, branch protection and merge, online editing, and
statistical analysis. The service aims to address issues such as cross-distance
collaboration, multi-branch concurrent development, code version management,
and security.

To start a new project, you can use CodeArts Repo built-in repository templates to
create a repository for development. For details, see Starting R&D Projects in
CodeArts Repo.

If you are developing a project locally and want to use CodeArts Repo to manage
versions, you can migrate the project to CodeArts Repo. For details, see Migrating
a Local Project to CodeArts Repo.

Starting R&D Projects in CodeArts Repo
You can use repository templates provided by CodeArts Repo to create a project
and start development. The following figure shows the workflow.

The operations involved are as follows:

CodeArts Repo
User Guide 1 Overview

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 1

● 5.3 Creating a Repository Using a Template
● 8.10.2 Configuring Member Management
● 9 Configuring CodeArts Repo
● 2 Git Installation and Configuration
● 7 Cloning or Downloading Code from CodeArts Repo to a Local PC
● 8.4.3 Managing Branches
● 8.4.4 Managing Tags
● 10 Submitting Code to the CodeArts Repo
● 8.5.1 Managing MRs
● 5.5 Forking a Repository

Migrating a Local Project to CodeArts Repo

To manage code versions of a locally developed project using CodeArts Repo, you
can bind the local repository to CodeArts Repo and complete initial push. Then,
you can continue developing your project in the distributed version management
mode. The following figure shows the workflow.

The operations involved are as follows:

● 5.2 Creating an Empty Repository
● 8.10.2 Configuring Member Management
● 9 Configuring CodeArts Repo
● 2 Git Installation and Configuration
● 6 Associating the CodeArts Repo Repository
● 7 Cloning or Downloading Code from CodeArts Repo to a Local PC
● 8.4.3 Managing Branches
● 8.4.4 Managing Tags

CodeArts Repo
User Guide 1 Overview

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 2

● 10 Submitting Code to the CodeArts Repo
● 8.5.1 Managing MRs
● 5.5 Forking a Repository

Distributed Version Management
There is a complete code repository on your local computer and in CodeArts Repo
respectively.

All version information can be synchronized to the local computer for viewing.

You can commit code offline on the local computer and push the code to the
CodeArts Repo repository when the network is connected.

Basic Workflow
CodeArts Repo is a cloud repository service that uses the Git workflow.

● Data in a Git local repository can be in one of the three statuses: modified,
staged, and committed. The file you modified in the repository is in the
modified state. You can run the add command to add the changes to the
local staging area. Then, the file is in the staged state. Run the commit
command to commit the changes to the local repository for management.
The corresponding version and version number are generated upon each
commit. You can switch and roll back a version based on the version number.
A version can have multiple branches and tags. Each branch, tag, or commit is
an independent version that can be checked out using the checkout
command.

● As a cloud repository service, CodeArts Repo not only has the basic features of
local Git repositories, but also serves as the remote repository of each local
repository and provides configurable security policies and authentication.

● A CodeArts Repo cloud repository interacts with a Git repository in the
following scenarios:

CodeArts Repo
User Guide 1 Overview

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 3

– clone: clones the branch in CodeArts Repo to the local computer as a
local repository.

– push: pushes changes in the local repository to CodeArts Repo.
– fetch: fetches a version from CodeArts Repo to the working directory.
– pull: fetches a version from CodeArts Repo to the working directory and

tries to merge it into the current branch. If the operation fails, you need
to manually resolve the file conflict.

CodeArts Repo
User Guide 1 Overview

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 4

2 Git Installation and Configuration

2.1 Installing and Configuring Git

2.2 Installing Git Bash for Windows

2.3 Installing TortoiseGit for Windows

2.4 Installing Git for Linux

2.5 Installing Git for macOS

2.1 Installing and Configuring Git
CodeArts Repo is a Git-based service. Git clients such as Git Bash or TortoiseGit
must be installed on local computers to connect to CodeArts Repo. The following
sections describe how to install and configure Git Bash and TortoiseGit on
Windows, Linux, and macOS.

If you have installed Git and configured the signature and email address, skip the
following sections:

● 2.2 Installing Git Bash for Windows
● 2.3 Installing TortoiseGit for Windows
● 2.4 Installing Git for Linux
● 2.5 Installing Git for macOS

NO TE

GitHub Desktop is not supported in CodeArts Repo.

2.2 Installing Git Bash for Windows
Git Bash is a simple and efficient client on Windows for users who are familiar
with Git commands. If you are unfamiliar with Git commands, you can use
TortoiseGit by referring to 2.3 Installing TortoiseGit for Windows.

1. Install the Git Bash client.

a. Go to the Git Bash website and download the installation package for
32-bit or 64-bit Windows.

CodeArts Repo
User Guide 2 Git Installation and Configuration

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 5

https://git-scm.com/download/win

b. Double-click the installation package. In the installation window
displayed, click Next for several times and then click Install.

2. Open the Git Bash client.
Click the Windows start icon, enter Git Bash in the search box, and press
Enter to open Git Bash. You are advised to pin Git Bash to the Windows
taskbar.

3. Configure the Git Bash client.
Enter the following commands in Git Bash to configure your username and
email address:
git config --global user.name your_username
git config --global user.email your email address

Run the following command to view the configurations:
git config -l

NO TE

● A username can contain letters, digits, and special characters. You are advised to
set the same username as that in CodeArts Repo.

● The email address should be written in the standard format.
● The --global parameter in the commands indicates that the configurations apply

to all Git repositories on your computer. However, you can set a different username
and email address for a specific repository.

2.3 Installing TortoiseGit for Windows
TortoiseGit is a better choice if you are not familiar with Git commands or you
hope to migrate code from an SVN client such as TortoiseSVN. TortoiseGit is a
Windows shell interface to Git as TortoiseSVN to SVN.

Prerequisites
1. Go to the TortoiseGit website and download the installation package for 32-

bit or 64-bit Windows.
2. Double-click the installation package. In the window displayed, click Next for

several times and then click Install to complete the installation. Click Finish
to run the tool.

3. In the first start wizard displayed, select a language, enter a Git.exe path (the
field is automatically filled with an available path if there is any), and
configure a username and email address. Keep the default values and click
Next till the settings are finished.

(Optional) Localization
TortoiseGit is installed in English by default. If you want to use a translated version
of TortoiseGit, go to the TortoiseGit website to download your desired language
pack.

Configurations
TortoiseGit also requires a key pair for authentication with the CodeArts Repo
server. To generate a key pair, perform the following steps:

CodeArts Repo
User Guide 2 Git Installation and Configuration

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 6

https://tortoisegit.org/download/
https://tortoisegit.org/download/

1. Search for PuTTYgen and open it. In the displayed window, click Generate to
generate a key pair.

NO TE

PuTTYgen is a powerful, compact, and easy-to-use tool for generating pairs of public
and private keys. It is installed along with the TortoiseGit installation and does not
conflict with the one built in PuTTY.

2. After the key pair is generated, store the public and private keys.
– Click Save private key. In the dialog box that is displayed, enter a file

name and save the private key file.
– Click Save public key. In the dialog box that is displayed, enter a file

name and save the public key file.
3. Copy the public key in the red box in the following figure and bind it to

CodeArts Repo.

CodeArts Repo
User Guide 2 Git Installation and Configuration

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 7

4. Bind the private key to the local client.

Search for Pageant and open it. In the displayed window, click Add Key, and
select the generated private key file.

2.4 Installing Git for Linux
● Debian or Ubuntu

Run the following command in the terminal:
apt-get install git

● Fedora, CentOS, or Red Hat

Run the following command in the terminal:
yum install git

● For more OSs, see the Git official website.

2.5 Installing Git for macOS
● You can quickly install Git on macOS by installing Xcode command line tools.

● On Mavericks 10.9 or a later version, run the git command on the Terminal.
The system will prompt you to install the command line tools if you have not.

● If you want to install Git of a later version, go to the Git website and
download the latest version for macOS.

CodeArts Repo
User Guide 2 Git Installation and Configuration

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 8

3 Setting SSH Key or HTTPS Password for
CodeArts Repo Repository

3.1 Overview

3.2 SSH Keys

3.3 HTTPS Password

3.1 Overview

What Is an SSH Key and HTTPS Password?

When you push code to or pull code from CodeArts Repo repository, the repository
needs to verify your identity and permissions. SSH and HTTPS are two
authentication modes for remote access to CodeArts Repo.

● 3.2 SSH Keys: An SSH key is used to establish a secure connection between
your local computer and CodeArts Repo under your account.

Before connecting to CodeArts Repo in SSH mode, generate an SSH key on
your computer and configure it in CodeArts Repo.

After you configure an SSH key on a local computer and add the public key to
CodeArts Repo, you can use the SSH key to access all code repositories under
your account from your computer.

● 3.3 HTTPS Password: An HTTPS password is a user credential used for pulling
and pushing code using the HTTPS protocol.

The maximum size of a package that can be pushed at a time using HTTPS is
200 MB. If the size is greater than 200 MB, use the SSH mode.

Federated users cannot be bound to email addresses and do not support the
HTTPS protocol.

NO TE

Either SSH or HTTPS can be used to push or pull code. Set SSH keys or HTTPS passwords as
required.

CodeArts Repo
User Guide

3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 9

https://support.huaweicloud.com/eu/usermanual-iam/iam_08_0001.html

3.2 SSH Keys

Introduction

When you push code to or pull code from CodeArts Repo, the repository needs to
verify your identity and permissions. SSH is an authentication mode for remote
access to CodeArts Repo.

● An SSH key is an encrypted network transmission protocol that establishes a
secure connection between your computer and CodeArts Repo under your
account.

● After you configure an SSH key on a local computer and add the public key to
CodeArts Repo, you can use the SSH key to access all code repositories under
your account from your computer.

● Before connecting to CodeArts Repo in SSH mode, generate an SSH key on
your computer and configure it in CodeArts Repo.

Generating and Configuring an SSH Key

The following procedure describes how to generate a public key and bind it.

Step 1 Install the Git Bash client by referring to 2.2 Installing Git Bash for Windows.

Step 2 Check whether your computer has generated a key.

Run the following command on the local Git client:

cat ~/.ssh/id_rsa.pub

● If No such file or directory is displayed, no SSH key has been generated on
the computer. Go to Step 3 to generate and configure an SSH key.

● If at least one group of keys is returned, an SSH key has been generated on
your computer. To use the generated key, go to Step 4 directly. To generate a
new key, go to Step 3.

Step 3 Generate an SSH private key.

Run the following command on the local Git client to generate a new SSH key:
ssh-keygen -t rsa -C "Your SSH key comment"

CodeArts Repo
User Guide

3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 10

Perform the following operations. If information similar to the preceding figure is
displayed, the key is generated.

1. The system prompts you to enter the storage path of the key. You can press
Enter to use the default path.

2. If a key already exists in the local path, the system asks you whether to
overwrite it. Enter n to cancel key generation, or enter y and press Enter to
overwrite the existing key. In this example, the existing key is overwritten.

3. The system prompts you to set a password for the key and confirm the
password. If you do not want to set a password, press Enter.

NO TICE

● If a password is set (recommended), the generated private key file is stored
after being encrypted by AES-128-CBC.

● If you press Enter without entering the password, the generated private key file
id_rsa is stored locally in plaintext. Keep it secure.

Step 4 Copy the SSH public key to the clipboard.

Run the following command based on your operating system to copy the SSH
public key to your clipboard. Take Windows as an example. If no command output
is displayed, the public key is copied.
● Windows

clip < ~/.ssh/id_rsa.pub

● macOS
pbcopy < ~/.ssh/id_rsa.pub

● Linux (xclip required)
xclip -sel clip < ~/.ssh/id_rsa.pub

Step 5 Log in to the CodeArts Repo service repository list page, click the alias in the
upper right corner, and choose This Account Settings > SSH Keys.

CodeArts Repo
User Guide

3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 11

Alternatively, log in to the repository list page of CodeArts Repo and click the

 icon to go to the SSH Key page.

Step 6 On the SSH Keys page, click Add SSH Key. The Add SSH Key page is displayed.

Step 7 Enter a key name, paste the SSH public key copied in Step 4 to the Key text box,
select I have read and agree to the Privacy Statement and CodeArts Service
Statement, and click OK. A message is displayed, indicating that the operation is
successful.

NO TE

● An SSH key cannot be added repeatedly. If an SSH key fails to be added, check whether
it has already been added or whether there are redundant spaces in the key.

● After the key is added, you can view it on the SSH Keys page. If it is no longer used, you
can delete it.

● The difference between an SSH key and repository deploy key is that the former is
associated with a user/computer and the latter is associated with a repository. The SSH
key has the read and write permissions on the repository, and the deploy key has the
read-only permission on the repository.

----End

CodeArts Repo
User Guide

3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 12

Verifying Whether an SSH Key Is Bound

When an SSH key is bound, you can perform SSH-clone on the repository that you
have the access permission on the client. If the clone is successful, the key is
bound.

NO TE

If you use SSH to clone a repository to the local computer for the first time, the message
"The authenticity of host *.*.com can't be established. RSA key... (yes/no)?" is displayed.
Enter yes to continue.

3.3 HTTPS Password

Introduction

When you push code to or pull code from CodeArts Repo, the repository needs to
verify your identity and permissions. HTTPS is an authentication mode for remote
access to CodeArts Repo.

● HTTPS username
The value can be the tenant name or IAM username. Enter the complete
username. If you want to add the username to the URL, escape '/' to ' %2F'.

NO TE

When setting the HTTPS password for the account (the account name is the same as
the username), you can enter only the account name.

● HTTPS password
– Enter a password containing 8 to 32 characters. The password must

contain at least three types of digits, uppercase letters, lowercase letters,
and special characters. It cannot be the same as the username or the
username spelled backwards.

– An HTTPS password is a user credential used for pulling or pushing code
using the HTTPS protocol. Each developer needs to set a password only
once and can use it for all repositories.

– Keep your HTTPS password secure and change it periodically to avoid
security risks. If you forget the password, set a new HTTPS password.

NO TE

By default, the HTTPS password is the Huawei Cloud login password. The password can be
synchronized in real time. You can also select Set new password to change the password.

Changing the HTTPS Password

You need to set the initial password upon the first login. You can also change the
HTTPS password at any time. The procedure is as follows:

Step 1 Log in to the CodeArts Repo service repository list page, click the alias in the
upper right corner, and choose This Account Settings > HTTPS Password. The
page is displayed.

CodeArts Repo
User Guide

3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 13

Alternatively, log in to the repository list page of CodeArts Repo and click the

 icon to go to the SSH Key page.

Step 2 Choose Set new password to reset the password. (If you have set an HTTPS
password and are using it, click Change.)

Step 3 Enter the new password and email verification code, select I have read and agree
to the Privacy Statement and CodeArtsService Statement, and click OK. A
message is displayed, indicating that the operation is successful.

Step 4 After the password is reset, you need to regenerate the repository credential
locally and check the IP address whitelist. Otherwise, you cannot interact with
the CodeArts Repo repository.

CodeArts Repo
User Guide

3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 14

Delete the local credential (for example, on Windows, choose Control Panel >
User Accounts > Manage Windows Credentials > Generic Credentials), use
HTTPS to clone the cloud repository again, and enter the correct account and
password in the dialog box that is displayed.

NO TE

If SSL certificate problem is displayed, run the following command on Git client:
git config --global http.sslVerify false

----End

NO TE

● You can click Use Huawei Cloud Account Password to reset the password and
customize a password at any time.

● The maximum size of a package that can be pushed at a time using HTTPS is 200 MB. If
the size is greater than 200 MB, use the SSH mode.

Verifying Whether an HTTPS Password Takes Effect
After setting an HTTPS password, you can perform HTTPS-clone on the repository
that you have the access permission on the client. A dialog box is displayed, asking
you to enter the account and password. If the clone is successful, the password is
configured.

NO TE

You can also use the HTTPS protocol to set password-free code submission. For details, see
Setting Password-Free Access via HTTPS

CodeArts Repo
User Guide

3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 15

4 Migrating Data to CodeArts Repo

4.1 Overview
4.2 Migrating an SVN Repository to CodeArts Repo
4.3 Importing a Remote Git Repository to CodeArts Repo
4.4 Uploading Local Code to CodeArts Repo

4.1 Overview
This section describes how to migrate your repository to CodeArts Repo. Select one
of the following migration solutions based on your repository storage mode:

● Migrating an SVN Repository to CodeArts Repo
● 4.3 Importing a Remote Git Repository to CodeArts Repo
● 4.4 Uploading Local Code to CodeArts Repo

4.2 Migrating an SVN Repository to CodeArts Repo
This section uses a code repository with the standard SVN layout as an example to
describe how to migrate an existing SVN repository to CodeArts Repo. The
following figure shows the directory structure of the repository.

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 16

There are two methods of migrating the existing SVN code. Both methods
effectively migrate the SVN code and operation records. The differences of the two
methods are as follows. In the first method, the branches and tags folders of the
SVN repository are mapped to Git branches and tags during the migration. This
facilitates subsequent development on CodeArts Repo, but the migration process is
complex. The second method is simple because the branch and tag folders of the
SVN repository are migrated without mapping, but it is inconvenient for
subsequent development. You can select a method as required.

● Migration Method 1: Import on the Git Bash Client: applicable to the
scenarios where only part of code is stored in the SVN during project
development

● Migration Method 2: Online Import Using HTTP: applicable to the scenarios
where the complete project code is stored in the SVN when the project is
complete

Migration Method 1: Import on the Git Bash Client

Step 1 Obtain committer information of the SVN repository.

1. Use TortoiseSVN to download the repository to be migrated to the local
computer.

2. Go to the local SVN repository (KotlinGallery in this example) and run the
following command on the Git Bash client:
svn log --xml | grep "^<author" | sort -u | \awk -F '<author>' '{print $2}' | awk -F '</author>' '{print
$1}' > userinfo.txt

The userinfo.txt file is generated in the directory.

3. Open the userinfo.txt file. You can view the information about all committers
who have committed code to the repository in the file.

4. Git uses an email address to identify a committer. To better map the SVN
repository information to a Git repository, create a mapping between the SVN
and Git usernames.
Modify the userinfo.txt file. Each line should be in the format of
svn_committer = git_committer_nickname <email_address>.

Step 2 Create a local Git repository.

1. Create an empty Git repository directory on the local computer, and copy
the userinfo.txt file obtained in Step 1 to the directory.

2. Start the Git Bash client in the directory and run the following command to
clone a Git repository:

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 17

git svn clone <svn_repository_address> --no-metadata --authors-file=userinfo.txt --trunk=trunk --
tags=tags --branches=branches

The following table lists parameters in the command. Set the parameters as
required.

Parameter Description

--no-metadata Prevents the Git from exporting useless information
contained in the SVN.

--authors-file File that maps all SVN accounts to Git accounts

--trunk Main development project

--branches Branch projects

--tags Tags

After the command is executed, a Git repository is generated locally.

3. Run the following commands to go to the KotlinGallery folder and verify the
current Git repository branch structure:
cd KotlinGallery
git branch -a

As shown in the preceding figure, all SVN directory structures are successfully
migrated in the form of Git branches.

Step 3 Correct local branches.

In Step 2, the git svn clone command is used to save the tags folder in the SVN
repository as a branch, which does not comply with the Git usage specifications.
Therefore, before uploading tags to CodeArts Repo, adjust the local branches to
comply with the Git usage specifications.

1. Go to the local Git repository and run the following commands on the Git
Bash client to change the tags branch to appropriate Git tags:
cp -Rf .git/refs/remotes/origin/tags/* .git/refs/tags/
rm -Rf .git/refs/remotes/origin/tags
git branch -a
git tag

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 18

2. Run the following commands to change the remaining indexes under refs/
remotes to local branches:
cp -Rf .git/refs/remotes/origin/* .git/refs/heads/
rm -Rf .git/refs/remotes/origin
git branch -a
git tag

3. Run the following commands to merge the trunk branch into the master
branch and delete the trunk branch:
git merge trunk
git branch -d trunk
git branch -a
git tag

Step 4 Upload the local code.

1. Set the SSH key of the repository by referring to 3.1 Overview.

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 19

2. Run the following commands to associate the local repository with the
CodeArts Repo repository and push the master branch to CodeArts Repo:
git remote add origin <CodeArts Repo_repository_address>
git push --set-upstream origin master

After the push is successful, log in to CodeArts Repo and view the master
branch of the repository after clicking the Code and Branches tabs.

3. Run the following command to push other branches from the local computer
to CodeArts Repo:
git push origin --all

After the push is successful, the r1.1_hotfix branch is added to the repository
after clicking the Code and Branches tabs.

4. Run the following command to push tags from the local computer to
CodeArts Repo:
git push origin --tags

After the push is successful, click the Code and Branches tabs and view tags
r1.0 and r1.1 added to CodeArts Repo.

----End

Migration Method 2: Online Import Using HTTP
Ensure that your SVN server supports HTTP or HTTPS access. You can enter
http(s)://SVN server address/Name of the repository to be accessed in any
browser for verification.

Step 1 On the CodeArts Repo list page, click next to New Repository and choose
Import Repository from the drop-down list.

Step 2 Enter the source repository URL, enter the SVN username and password, select I
have read and agree to the Privacy Statement and CodeArts Service
Statement, and click Next.

Enter the name of the repository to be created, configure permissions, and click
OK.

Step 3 After the repository is created, click the repository name to view details.

----End

4.3 Importing a Remote Git Repository to CodeArts
Repo

Background
CodeArts Repo allows you to import Git-based remote repositories.

Git-based remote repositories are cloud repositories hosted in storage services
such as GitHub.

Method 1: Online Import
You can directly import your remote repository to CodeArts Repo online. The
import speed will be affected by network conditions of the source repository.

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 20

1. On the CodeArts Repo homepage, click next to New Repository and
select Import Repository from the drop-down list. The Import Repository
page is displayed.

2. Enter information in the Source Repository URL field. If the source repository
is open-source (public repository), select Username and password not
required. If the source repository is private, select Username and password
required.

3. Click Next. On the Create Repository page, enter the basic information about
the repository.

4. Click OK to import the repository. The repository list page is displayed.

For details, see 5.4 Importing an External Repository.

Method 2: Cloning the Git Repository to the Local Computer and Associating
and Pushing It to CodeArts Repo

If you cannot import a repository online due to network issues, use this method.
Using this method, you can clone a remote repository to the local computer, and
then associate and push it to CodeArts Repo.

Step 1 Install and configure the Git client.

Step 2 Download a bare repository using the source repository address.

The following uses GitHub as an example:

1. Open a browser and enter the address of the GitHub code repository.

2. Click Code on the right, click the HTTPS tab, and click on the right.

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 21

3. Open the Git Bash client on the local PC, run the following command to clone
the repository to the local PC, and run the cd command to go to the
repository directory:
git clone --bare <source_repository_address>

Step 3 Associate the local repository with CodeArts Repo and push it to CodeArts Repo.

1. On the CodeArts Repo homepage, click New Repository. In the Permissions
area, do not select Allow generation of a README file.

2. Go to the repository details page created in 1, click Clone/Download, click

the Clone with SSH or Clone with HTTPS tab as required, and click to
obtain the repository address.
In this example, the HTTPS address is used.

3. In the root directory of local source code, open the Git Bash client and run the
following command to push the local repository to the new repository:
git push --mirror <new_repository_address>

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 22

When the command is executed, the system prompts you to enter the HTTPS
account and password of the CodeArts Repo repository. Enter the correct
account and password. (For details about how to obtain an HTTP account and
password, see Changing the HTTPS Password.)

If your source repository has branches and tags, they will also be pushed to
CodeArts Repo.

----End

After the push is successful, check whether the migration is complete in CodeArts
Repo. (For details about how to view a CodeArts Repo repository, see 8.1 Viewing
the Repository List.)

4.4 Uploading Local Code to CodeArts Repo

Background

CodeArts Repo allows you to perform Git initialization on local code and upload
the code to a CodeArts Repo repository.

Procedure

Step 1 Create an empty repository in CodeArts Repo.
● Do not configure Programming Language of .gitignore.
● Deselect Allow generation of a README file.

Step 2 Prepare the source code to be uploaded on the local computer.
● If the source code is from the SVN server, refer to Migrating an SVN

Repository.
● If the source code is not managed by any version control systems, run the

following Git command in the root directory of the source code (Git Bash is
used as an example):

a. Initialize a Git repository on the local computer:
git init

b. Add the code files to the local repository:
git add *

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 23

c. Create an initial commit:
git commit -m "init commit"

Step 3 Set a remote server address for the local repository.
● If the Git repository is cloned from other systems, run the following command

to add a new remote repository:
git remote add new git@***.***.com:testtransfer/Repo1.git # (replace the part after new with the
repository address)

The repository address is displayed on the repository details page. The
following figure shows how to obtain the repository address.

● If the Git repository is just initialized, run the following command to add a
remote repository named origin.
git remote add origin git@***.***.com:testtransfer/Repo1.git # (replace the part after origin with the
repository address)

Step 4 Push all code to CodeArts Repo.
git push new master # (when the Git repository is cloned from other systems)
git push origin master # (when the Git repository is just initialized)

----End

NO TE

Basic Git knowledge is required for the preceding operations. If you have any questions
during the operation, see the Git website or contact technical support.

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 24

https://git-scm.com

5 Creating a CodeArts Repo Repository

5.1 Overview

5.2 Creating an Empty Repository

5.3 Creating a Repository Using a Template

5.4 Importing an External Repository

5.5 Forking a Repository

5.1 Overview
Currently, CodeArts Repo provides the following ways to create a repository.

● 5.2 Creating an Empty Repository: You can create a local repository and
synchronize it to CodeArts Repo.

● 5.3 Creating a Repository Using a Template: You can create a repository
using a CodeArts Repo template when there is no local repository.

● 5.4 Importing an External Repository: You can import a cloud repository to
CodeArts Repo or import a CodeArts Repo repository from a region to another
region (see 9.2.5 Repository Backup). The imported repository is independent
of the source repository.
– Scenario 1: Migrate Gitee and GitHub repositories and projects to

CodeArts Repo.
– Scenario 2: Migrate CodeArts projects from a region to other regions.

● Forking a Repository: You can fork a CodeArts Repo repository, make
changes to the fork, and merge the changes to the source repository.
– Scenario 1: Carry out new projects based on historical projects without

damaging the repository structure of the historical projects.
– Scenario 2: Share projects of your organization with others.

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 25

NO TICE

● The capacity of a single repository cannot exceed 2 GB (including LFS usage). If
the capacity exceeds 2 GB, the repository cannot be used properly and cannot
be expanded.

● When the capacity of a repository exceeds the upper limit, the repository is
frozen. In this case, you are advised to delete the repository, control the
capacity locally, and push the repository again.

Common Repository Settings
● 9.2.1 Repositories

● 9.3.3 Commit Rules

● 9.3.4 Merge Requests

● 9.3.1 Protected Branches

● 9.5.2 IP Address Whitelists

● More settings

5.2 Creating an Empty Repository
You can create an empty repository and synchronize a local repository to CodeArts
Repo. To create an empty repository on the CodeArts Repo console, perform the
following steps:

Step 1 Access the repository list page.

Step 2 Click New Repository. On the page that is displayed, enter basic repository
information.

Table 5-1 Parameters for creating an empty repository

Parameter Ma
nda
tory

Remarks

Repository
Name

Yes The name must start with a letter, digit, or underscore (_)
and can contain periods (.) and hyphens (-), but cannot end
with .git, .atom, or period (.). The name can contain a
maximum of 200 characters.

Project Yes ● A repository must be associated with a project.
● If the account does not have a project, click Create

Project in the drop-down list box to create a basic, a
Scrum or an IPD-Self-Operated Software/Cloud
Service project.

NOTE
If you create a repository in a project, the project is selected for
Project by default, and the Project parameter is hidden on the
repository creation page.

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 26

Parameter Ma
nda
tory

Remarks

Descriptio
n

No Enter a description for your repository. The description can
contain a maximum of 2000 characters.

Programmi
ng
Language
of .gitignor
e

No The .gitignore file is generated based on your selection. (For
details about gitignore, see Documentation.)

Permission
s

No The options are as follows:
● Make all project developers automatic repository

members
If you select this option, the project developer is
automatically added as a repository member. By default,
the project manager is a repository member.

● Allow generation of a README file
You can edit the README file to record information such
as the project architecture and compilation purpose,
which is similar to a comment on the entire repository.

● Create a code check task automatically (for free).
After the repository is created, you can view the code
check task of the repository in the CodeArts Check task
list after switching to the region where the repository is
located.

Visibility Yes The options are as follows:
● Private

The repository is visible only to repository members.
Repository members can access the repository or commit
code.

● Public read-only
The repository is open and read-only to all guests, but is
not displayed in their repository list or search results. You
can select an open-source license as the remarks.

Step 3 Click OK to create the repository. The repository list page is displayed.

----End

Associating with an Existing Directory or Repository
If you do not generate a README file when creating a common repository, you
can click the Code tab, click Create a README file or associate the repository
with an existing directory or repository. The procedure is as follows:

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 27

https://git-scm.com/docs/gitignore

Prerequisites

● You need to run following commands on the Git client. Install the Git client
and configure the Git global username and user email address. For details,
see 2 Git Installation and Configuration.

● Set the SSH key. For details, see 3.2 SSH Keys.

Procedure

NO TE

The following commands have been automatically generated in the new repository. You can
copy them on the Code tab page of the repository.

Step 1 Clone the repository on the local host and push the new README file.
git clone HTTP_download_address
cd taskecho "# Repository_name" > README.md
git add README.md
git commit -m "add README"
git push -u origin master

Step 2 Associate an existing code directory with the repository.
cd <Your directory path>
mv README.md README-backup.md
git init
git remote add origin HTTP_download_address
git pull origin master
git add --all
git commit -m "Initial commit"
git push -u origin master

Step 3 Associate with an existing Git repository.
cd <Your Git repository path>
git remote remove origin > /dev/null 2>&1
git remote add origin HTTP_download_address
git push -u origin --all -f
git push -u origin --tags -f

----End

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 28

5.3 Creating a Repository Using a Template
You can create a repository using a CodeArts Repo template on the CodeArts Repo
console.

Procedure

Step 1 Access the repository list page.

Step 2 Click next to New Repository and select Template Repository from the drop-
down list. The Select Template page is displayed.

Step 3 On the Select Template page, enter a keyword for fuzzy search and select a
template as required.

Step 4 Click Next. On the Basic Information page, enter basic repository information.

Table 5-2 Parameters for creating a repository using a template

Parameter Man
dato
ry

Remarks

Repository
Name

Yes The name must start with a letter, digit, or underscore (_)
and can contain periods (.) and hyphens (-), but cannot
end with .git, .atom, or period (.). Min. 2 characters; Max.
200 characters.

Project Yes ● A repository must be associated with a project.
● If the account does not have a project, click Create

Project in the drop-down list box to create a basic, a
Scrum or an IPD-Self-Operated Software/Cloud
Service project.

NOTE
If you create a repository in a project, the project is selected for
Project by default, and the Project parameter is hidden on the
repository creation page.

Descriptio
n

No Enter a description for your repository. The description can
contain a maximum of 2000 characters.

Permission
s

No ● Make all project developers automatic repository
members
If you select this option, the project developer is
automatically added as a repository member. By default,
the project manager is a repository member.

● Create a code check task automatically (for free).
After the repository is created, you can view the code
check task of the repository in the code check task list

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 29

Parameter Man
dato
ry

Remarks

Visibility Yes The options are as follows:
● Private

The repository is visible only to repository members.
Repository members can access the repository or
commit code.

● Public
The repository is open and read-only to all guests, but is
not displayed in their repository list or search results.
You can select an open-source license as the remarks.

Step 5 Click OK to create the repository.

----End

NO TE

When you create a repository by template, the repository type of the selected template will
be automatically configured for the repository.
The repository created using the template contains the repository file structure preset in the
template.

Automatically Creating a Pipeline
A pipeline can be automatically created when a repository is created using a
template. Note that the host used in CodeArts Deploy must be changed to the
actual environment so that the pipeline can be successfully executed.

Step 1 On CodeArts Repo, click next to New Repository and select Template
Repository.

Step 2 On the Select Template page, set Automated Pipeline Creation to Yes in the
navigation pane to display templates that can be used to automatically create a
pipeline.

Step 3 Select a template as required, click Next, enter basic repository information, and
click OK.

Step 4 After the repository is created, you can view the pipeline that is automatically
created on the pipeline list page displayed.

----End

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 30

5.4 Importing an External Repository
You can import a cloud repository to CodeArts Repo or import a CodeArts Repo
repository from a region to another region (see 9.2.5 Repository Backup). The
imported repository is independent of the source repository.

To import an external repository on the CodeArts Repo console, perform the
following steps:

Step 1 Access the repository list page.

Step 2 Click next to New Repository and select Import Repository from the drop-
down list.

NO TICE

● An external repository can be a Git remote repository (HTTPS) or SVN
repository.

● The source repository port can be 80, 443, or greater than 1024.
● Currently, GitHub, Gitee, GitLab, and SVN source repositories are supported. If

the import using other types of source repositories fails, contact technical
support to check the source server whitelist.

Step 3 Enter the source repository path, and enter the username and password for
accessing the source repository. (This parameter is not required for open-source
repositories.)

Step 4 Click Next. On the Create Repository page, enter the basic information about the
repository.

Table 5-3 Parameter description

Parameter Ma
nda
tory

Remarks

Repository
Name

Yes The name must start with a letter, digit, or underscore (_)
and can contain periods (.) and hyphens (-), but cannot end
with .git, .atom. The name can contain a maximum of 200
characters.

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 31

Parameter Ma
nda
tory

Remarks

Descriptio
n

No Enter a description for your repository. The description can
contain a maximum of 2,000 characters.

Permission
s

No ● Make all project developers automatic repository
members
If you select this option, the project developer is
automatically added as a repository member. By default,
the project manager is a repository member.

● Create a code check task automatically (for free).
After the repository is created, you can view the code
check task of the repository in the check task list

Visibility Yes The options are as follows:
● Private

The repository is visible only to repository members.
Repository members can access the repository or commit
code.

● Public read-only
The repository is open and read-only to all visitors. You
can select an open-source license as the remarks.

Branch Yes You can choose to synchronize the default branch or all
branches of the source repository.

Schedule No Select Schedule sync into repo.
● The default branch of the source repository is

automatically imported to the default branch of the new
repository every day.

● The repository becomes a read-only image repository and
cannot be written. In addition, only the branches of the
third-party repository corresponding to the default
branch of the current repository are synchronized.

Step 5 Click OK to import the repository. The repository list page is displayed.

----End

NO TE

● The timeout interval for importing a repository is 30 minutes. If the import times out,
use the clone/push function on the client.

● The Git LFS object is not imported.
● The repository domain must be connected to the service node.

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 32

5.5 Forking a Repository

Application Scenarios
You can fork a CodeArts Repo repository based on an image repository, make
changes to the fork, and merge the changes to the source repository. Before
changes are merged, the changes of the fork or the source repository will not
affect each other.

As shown in the following figure, fork is applicable to the development scenario
where a large-scale project contains multiple sub-projects. The complex
development process occurs only in image repositories and the project repository
(source repository) is not affected. Only new features that are completed can be
merged to the project repository. Fork can be considered as a team collaboration
mode.

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 33

Differences Between Forking a Repository and Importing an External
Repository

The two modes are both repository replication. The main difference lies in the
association between the source repository and the copied repository. The details
are as follows:

● Fork
– Forks are used to copy repositories on CodeArts Repo.
– A fork generates a repository copy based on the current version of the

source repository. You can apply for merging changes made on the fork
to the source repository (cross-repository branch merge), but you cannot
pull updates from the resource repository to the fork.

● Import
– You can import repositories of other version management platforms

(mainly Git- and SVN-based hosting platforms) or your own repository to
CodeArts Repo.

– An import also generates a repository copy based on the current version
of the source repository. The difference is that you can pull the default
branch of the source repository to the repository copy at any time to
obtain the latest version, but you cannot apply for merging changes
made on the repository copy to the source repository.

Forking a Repository

Step 1 Access the repository list page.

Step 2 Click a repository name to go to the target repository.

Step 3 Click Fork in the upper right corner of the page. In the Fork Repository dialog box
that is displayed, select the target project, enter the repository name, and select
Allow project members to access the repository .

Step 4 Click OK to fork the repository.

----End

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 34

Viewing the List of Forked Repositories

Step 1 Access the repository list page.

Step 2 Click the source repository name.

Step 3 Click Fork in the upper right corner of the page to view the list of forked
repositories, as shown in the following figure.

You can click the name of a forked repository to access the repository.

----End

Merging Changes of a Fork to the Source Repository

Step 1 Access the repository list page.

Step 2 Click the name of the forked repository.

Step 3 Click the Merge Requests tab.

Step 4 Click New. The Create Merge Request page is displayed.

Source Branch is the one that requests merging.

Target Branch is the one that merges content.

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 35

Step 5 Click Next. The page for creating a merge request is displayed. The subsequent
operation process is the same as that of creating a merge request in the
repository. For details, see Creating a Merge Request.

----End

NO TE

A cross-repository MR belongs to the source repository and can be viewed only on the
Merge Requests tab of the source repository. Therefore, reviewers, approvers, and mergers
must be members of the source repository.

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 36

6 Associating the CodeArts Repo
Repository

Before using CodeArts Repo, initialize the local project files to a Git repository and
associate it with a CodeArts Repo repository.

Prerequisites

You have installed the Git client and bound the SSH key of the Git client to
CodeArts Repo.

Procedure

Step 1 Create a CodeArts Repo repository.

If you select gitignore based on your local code library, some non-development
files will be ignored and will not be managed in Git.

Step 2 Initialize the local repository to a Git repository.

Open the Git Bash client in your repository and run the following command:

git init

The following figure shows that the initialization is successful. The current folder is
the local Git repository.

Step 3 Bind the CodeArts Repo repository.

1. Go to the CodeArts Repo repository and obtain the repository address.
2. Run the remote command to bind the local repository to the cloud repository.

git remote add <repository_alias> <repository_address>

Example:
git remote add origin git@*****/java-remote.git # Change the address to that of your repository.

By default, origin is used as the repository alias when you clone a remote
repository to the local computer. You can change the alias.

CodeArts Repo
User Guide 6 Associating the CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 37

If the system displays a message indicating that the repository alias already
exists, use another one.

If no command output is displayed, the binding is successful.

Step 4 Pull the master branch of the CodeArts Repo repository to the local repository.

This step is performed to avoid conflicts.

git fetch origin master # Change origin to your repository alias.

Step 5 Commit local code files to the master branch.

Run the following commands:

git add .
git commit -m "<your_commit_message>"

The following figure shows a successful execution.

Step 6 Bind the local master branch to the master branch of CodeArts Repo repository.
git branch --set-upstream-to=origin/master master # Change origin to your repository alias.

If the following information is displayed, the binding is successful.

Step 7 Merge the files in the CodeArts Repo repository and local repository and store
them locally.
git pull --rebase origin master # Change origin to your repository alias.

The following figure is displayed, indicating that the merged repository has been
placed in the working directory and repository.

Step 8 Push the local repository to overwrite the CodeArts Repo repository.

Run the push command because the repositories have been bound:

git push

After the operation is successful, pull the repository to verify that the version of
the CodeArts Repo repository is the same as that of the local repository.

CodeArts Repo
User Guide 6 Associating the CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 38

----End

CodeArts Repo
User Guide 6 Associating the CodeArts Repo Repository

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 39

7 Cloning or Downloading Code from
CodeArts Repo to a Local PC

7.1 Overview

7.2 Using SSH to Clone Code from CodeArts Repo to a Local PC

7.3 Using HTTPS to Clone Code from CodeArts Repo to a Local Computer

7.4 Downloading a Code Package on a Browser

7.1 Overview
In addition to 8.4.1 Managing Files, the Git-based CodeArts Repo also allows you
to download repository files to a local PC.

There are three methods of cloning or downloading a repository to a local PC for
the first time:

● 7.2 Using SSH to Clone Code from CodeArts Repo to a Local PC
● 7.3 Using HTTPS to Clone Code from CodeArts Repo to a Local Computer
● 7.4 Downloading a Code Package on a Browser

7.2 Using SSH to Clone Code from CodeArts Repo to a
Local PC

Prerequisites

Your network can access CodeArts Repo. For details, see Network Connectivity
Verification.

Cloning Code on the Git Bash Client Using SSH

This section describes how to use the Git Bash client to clone a repository of
CodeArts Repo to a local PC.

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 40

Step 1 Download and install the Git Bash client.

Step 2 Configure an SSH key.

Step 3 Obtain the repository address. (If there is no repository, create one.)

On the repository details page, click Clone/Download to obtain the SSH address.
You can use this address to connect to CodeArts Repo from the local PC.

NO TE

If no SSH key is available, click SSH Keys to configure one. For details, see SSH key.

You can obtain the SSH address from URL in the repository list of CodeArts Repo.

Step 4 Open the Git Bash client.

Create a folder on the local PC to store the code repository. Right-click the blank
area in the folder and open the Git Bash client.

NO TE

The repository is automatically initialized during clone. You do not need to run the init
command.

Step 5 Run the following command to clone code from CodeArts Repo:
git clone <repository_address>

repository_address in the command is the SSH address obtained in Step 3.

If you clone the repository for the first time, the system asks you whether to trust
the remote repository. Enter yes.

After the command is executed, a folder with the same name as CodeArts Repo is
displayed, and a hidden .git folder exists in the folder, indicating that the
repository is cloned.

Step 6 Run the following command to go to the repository directory:
cd <repository_name>

You will be taken to the master branch by default.

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 41

----End

NO TE

If the git clone command fails to be executed, locate the fault as follows:
● Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@**********.com

If the returned information contains Could not resolve hostname code**********.com:
Name or service not known as shown in the following figure, your network is
restricted and you cannot access CodeArts Repo. In this case, contact your local network
administrator.

● Check the SSH key. If necessary, regenerate a key and configure it on the CodeArts
Repo console.

● Only PCs that enabled the IP address whitelist can be cloned on the Git client.

Cloning Code on the TortoiseGit Client Using SSH
This section describes how to use the TortoiseGit client to clone a repository of
CodeArts Repo to a local PC.

Step 1 Download and install the TortoiseGit client.

Step 2 Obtain the repository address. (If there is no repository, create one.)

On the repository details page, click Clone/Download to obtain the SSH address.
You can use this address to connect to CodeArts Repo from the local PC.

NO TE

You can obtain the SSH address from URL in the repository list of CodeArts Repo.

Step 3 Go to the local directory where you want to clone the repository, and choose Git
Clone... from the right-click menu.

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 42

Step 4 In the dialog box displayed, paste the copied repository address to the URL field,
select Load Putty Key, choose the private key file, and click OK.

Step 5 Click OK to start cloning the repository. If you clone the repository for the first
time, the TortoiseGit client asks you whether to trust the remote repository. Click
Yes.

Step 6 The cloning duration is affected by the repository size. The following figure shows
the cloning process.

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 43

----End

Cloning a Repository on Linux or macOS Using SSH
After the environment is configured (see 2.4 Installing Git for Linux or 2.5
Installing Git for macOS), the clone operations of the Git client on Linux or
macOS are the same as those in Cloning Code on the Git Bash Client Using SSH.

7.3 Using HTTPS to Clone Code from CodeArts Repo to
a Local Computer

Cloning Code on the Git Bash Client Using HTTPS
This section describes how to use the Git Bash client to clone a repository of
CodeArts Repo to a local PC.

NO TICE

The maximum size of a package that can be pushed at a time using HTTPS is 200
MB. If the size is greater than 200 MB, use the SSH mode.
Federated users cannot be bound to email addresses and do not support the
HTTPS protocol.

Step 1 Download and install the Git Bash client.

Step 2 Configure an HTTPS password.

Step 3 On the CodeArts Repo homepage, click the name of a repository. On the
repository details page displayed, click Clone/Download, click Clone with HTTPS,
and copy the repository address.

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 44

https://support.huaweicloud.com/eu/usermanual-iam/iam_08_0001.html

NO TE

If no HTTPS password is available, click HTTPS Password to configure one. For details, see
HTTPS Password.

You can obtain the HTTPS address from URL in the repository list of CodeArts Repo.

Step 4 Open Git Bash, navigate to the directory where you want to clone the repository,
and run the following command. For the first clone, enter the username (account
name) and HTTPS password.
git clone HTTP_download_address

Step 5 After the username (account name) and HTTPS password are entered, the
repository is cloned.

Step 6 Run the following command to go to the repository directory:
cd <repository_name>

You will be taken to the master branch by default.

----End

NO TE

If the git clone command fails to be executed, locate the fault as follows:

● Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@**********.com

If the returned information contains Could not resolve hostname code**********.com:
Name or service not known as shown in the following figure, your network is
restricted and you cannot access CodeArts Repo. In this case, contact your local network
administrator.

● Check the HTTPS password and reset the password if necessary.

● Only PCs that enabled the IP address whitelist can be cloned on the Git client.

Cloning Code on the TortoiseGit Client Using HTTPS

This section describes how to use the TortoiseGit client to clone a repository of
CodeArts Repo to a local PC.

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 45

Step 1 Download and install the TortoiseGit client.

Step 2 Configure an HTTPS password.

Step 3 On the CodeArts Repo homepage, click the name of a repository. On the
repository details page displayed, click Clone/Download, click Clone with HTTPS,
and copy the repository address.

NO TE

If no HTTPS password is available, click HTTPS Password to configure one. For details, see
HTTPS Password.
You can obtain the HTTPS address from URL in the repository list of CodeArts Repo.

Step 4 Go to the directory where you want to clone the repository, and choose Git
Clone... from the right-click menu.

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 46

Step 5 In the dialog box displayed, paste the copied repository address to the URL field
and click OK.

Step 6 If you clone a repository on TortoiseGit for the first time, enter the username and
HTTPS password as prompted.

Step 7 Wait until the clone is complete.

----End

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 47

Cloning a Repository on Linux or macOS Using HTTPS
After the environment is configured (see 2.4 Installing Git for Linux or 2.5
Installing Git for macOS), the clone operations of the Git client on Linux or
macOS are the same as those in Cloning Code on the Git Bash Client Using
HTTPS.

7.4 Downloading a Code Package on a Browser
In addition to clone, CodeArts Repo also allows you to package and download the
code of a cloud repository to the local PC.

The downloaded code repository file is not associated with CodeArts Repo and
cannot be pushed back to CodeArts Repo.

The procedure is as follows:

Step 1 Access the repository list page.

Step 2 Go to your repository. (If there is no repository, create one.)

Step 3 Click Clone/Download. In the dialog box that is displayed, click the required code
package format.

----End

NO TE

● If an IP address whitelist is set for the repository, only hosts with whitelisted IP
addresses can download the repository source code on the page. If no IP address
whitelist is set for the repository, all hosts can download the repository source code.

● Currently, the zip, tar.gz, tar.bz2, and tar package formats are supported.
● The master branch of CodeArts Repo will be downloaded.

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 48

8 Using CodeArts Repo

8.1 Viewing the Repository List

8.2 Viewing Repository Details

8.3 Viewing Repository Homepage

8.4 Managing Code Files

8.5 Managing MRs

8.6 Viewing Review Records of a Repository

8.7 Viewing Associated Work Items

8.8 Viewing Repository Statistics

8.9 Viewing Activities

8.10 Managing Repository Members

8.1 Viewing the Repository List
The repository list is the entry to CodeArts Repo. You can access the repository list
in the following ways:

You can create a repository, configure a repository, and obtain the repository
address.

● On your homepage, you can view repositories by category, such as Followed,
Participated, and Created. You can click the name of a target repository to
access the repository. You can view the combination requests of Created by
me, Merge pending, Review pending, and Approve pending. You can click
the name of a target merge request to access the combination request.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 49

NO TE

If you access a project of CodeArts Repo, this function is hidden.

● You can create a repository by New Repository, Template Repository or
Import Repository.

● Filter a Repository: You can select All repositories, Unlocked repositories, or
Locked repositories. For details about how to lock a repository, see
Repository Locking.

● You can click the button to switch the following status of a repository.
● Associated work Items with CodeArts Req to improve efficiency.
● Manage members by synchronizing members from a project with one click or

adjust the permission of a member separately.
● Delete a repository by entering a repository name.

NO TE

This operation cannot be canceled and deleted repositories cannot be restored. Please
double-check.

8.2 Viewing Repository Details
In the repository list, click a repository name to go to the repository details page.
CodeArts Repo provides abundant console operations.

Table 8-1 Description

Page Function Description

Reposito
ry
Homepa
ge

Displays the repository capacity, commits number , branches
number , tags number , members number, LFS usage, creation time,
creator, visible scope, repository status, README file, language, and
percentage of each language.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 50

Page Function Description

Code ● File list: You can create files, directories, and submodules, upload
files, modify files, modify blame, and view commit history.

● Submit: You can view commit records and repository network
diagrams.

● Branch: Branches can be managed on the console.
● Tag: Tags can be managed on the console.
● Comparison: You can view code changes between branches or

between tag versions by comparison.

Merge
Requests

Merge requests of branches can be managed on the console.

Reviews You can view the review records of MRs and commits.

Associat
ed Work
Items

List of associated work items. You can associate CodeArts Req work
items with the repository code to improve efficiency.

Reposito
ry
Statistics

Visualized charts of repository commits, such as code contribution.

Activity You can view the dynamic information about the repository.

Member
s

You can manage repository members, for example, synchronizing
members from the project by one click or changing the permissions
of a member.

Settings Repository settings. Only the repository administrator and the
repository creator can view this tab page and configure settings.

In addition, the repository details page provides quick entries to the following
functions:

● Configure builds: Create a build task.
● Follow: Click to follow the repository. The followed repositories are pinned on

top.
● Fork: displays the number of forks of a repository. You can click this button to

create a fork.
● Clone/Download: You can obtain the SSH address and HTTPS address of a

repository or directly download the code package.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 51

NO TE

The following figures show the adaptation function of CodeArts Repo. When the length of
the repository page is greater than the window length, the repository tab page is moved to
the top after you scroll down. The position in the red box in the following figure is collapsed
so you can view repository information easily. After you scroll up, the page layout is
restored.

8.3 Viewing Repository Homepage
The Home tab page displays the basic information about a repository.

Table 8-2 Parameter description

Parameter Description

Files Capacity of the current repository
NOTE

● The capacity of a single repository cannot exceed 2 GB (including
LFS usage). If the capacity exceeds 2 GB, the repository cannot
be used properly and cannot be expanded.

● When the capacity of a repository exceeds the upper limit, the
repository is frozen. In this case, you are advised to delete the
repository, control the capacity locally, and push the repository
again.

Commits Displays the number of commits in the current repository.
You can click the icon to go to the Code tab page and view
commit details.

Branches Displays the number of branches in the current repository.
You can click the icon to go to the Code tab page and
manage branches.

Tags Displays the number of tags in the current repository. You
can click the icon to go to the Code tab page and manage
tags.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 52

Parameter Description

Members Displays the number of members in the current repository.
You can click the icon to go to the Members tab page and
manage members.

LFS Usage Collect statistics on the LFS usage of the current repository.

Repository
description

The description entered during repository creation.

README.md You can preview README files. If no Readme file exists in
the repository, click Create Readme to create one.
Name: The default file name is README.md.
Format: The options are as follows:
● text: indicates text data or a text string.
● base64: Base64 is a method of representing binary data

based on 64 printable characters.
Content: The value can be customized.
● If the format is text, enter common text.
● If the format is base64, enter Base64-encoded content

that can pass the encoding verification.
Commit Message: Enter the commit information about the
file or folder, which can be customized.

Info Displays the creation time, creator, visible scope, and status
of a repository.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 53

Parameter Description

Readme Displays the README file of the current repository. You can
click the file name to go to the Code tab page and view the
file content.

Languages Displays the percentage of each language by file size in the
current repository.

8.4 Managing Code Files

8.4.1 Managing Files
CodeArts Repo allows you to edit and compare files, and trace file changes.

When you access repository details console, the system locates the Files subtab
on the Code tab page. You can switch to different branches and tags to view the
files in the corresponding version. As shown in the following figure, the file list
under the main branch is displayed on the left, the Repository name (file details
of a branch or tag version) and History (branch or tag version) tab pages are
displayed on the right.

File List
The file list is on the left of the Files tab page of the repository. The file list
provides the following functions:

1. Click a branch name to switch the branch and tag. After the branch and tag
are switched, the file directory of the corresponding version is displayed.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 54

2. Click to display the search box. You can search for files in the file list.

3. Click . The following functions can be extended:

NO TICE

Multi-level directories are supported when you create a file, rename a file,
create a directory, or create a submodule. Separate multi-level directories with
slashes (/), for example, java/com.

– Creating a file
Creating a file on the CodeArts Repo console is to create a file and run
the add, commit, and push commands. A commit record is generated.
On the Create File page, enter the file name, select the target template
type, select the encoding type, enter the file content and commit
information, and click OK.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 55

NO TE

The Commit Message field is equivalent to the -m message in git commit and
can be used for 8.7 Viewing Associated Work Items.

– Creating a directory
Creating a directory on the CodeArts Repo console is to create a folder
structure, and run the add, commit, and push commands. A commit
record is generated.
A .gitkeep file is created at the bottom of the directory by default
because Git does not allow a commit of an empty folder.
On the Create Directory page, enter the catalog name and commit
information, and click OK.

– Creating a submodule
– Uploading a file

Uploading a file on the CodeArts Repo console is to create a file and run
the add, commit, and push commands. A commit record is generated.
On the Upload File page, select the target file to be uploaded, enter the
commit information, and click OK.

NO TE

Move the cursor to the folder name and click to perform the preceding operations
in the folder.

4. Move the cursor to the file name and click to change the file name.
Renaming a file on the CodeArts Repo console is to change a file name, and
run the add, commit, and push commands. A commit record is generated.

5. You can click a file name to display the file content on the right of the page.
You can modify the file content, trace file modification records, view historical
records, and compare the file content.

Repository Name Tab Page: Viewing File Details of a Branch or Tag Version

By default, the repository name tab page displays file details of the master
branch.

It displays the following information:

● File: name of a file or folder.
● Commit message: message of the last commit to the file or folder (-m in the

commit command). You can click the message to display the commit record.
● Creator: creator of the last commit to the file or folder.
● Update time: last update time of the file or folder.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 56

NO TE

Commit messages are required for the edit and delete operations. They are similar to -m in
the git commit command and can be used for associating work items. For details, see 8.7
Viewing Associated Work Items.

History Tab: Viewing the Commit History of a Branch or Tag Version

The History tab page displays the commit history of a branch or tag version.

On this page, you can perform the following operations on the commit history:

● Click a commit name to go to the commit details page.

● Click to extend the following functions:

– Create Branch.

– Create Tag: You can create a tag for this commit. For details, see What is
a tag.

– Cherry-Pick: Use the commit as the latest commit to overwrite a branch.
It is used to retrieve a version.

– Revert: undoing this commit

– Browse Code.

Managing Repository Files

You can click a file name to manage the file. The functions are as follows:

NO TE

When you maximize the browser window, the functions in the drop-down menu shown in
the preceding figure are displayed in tile mode.

● File name: View the detailed content of the file.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 57

Table 8-3 Screen description

Screen
Function

Function Description

File Capacity Indicates the capacity of the file.

Full Screen Full screen to view the file content

Copy Code Copy the file content to the clipboard.

Open Raw You can view the original data of the file.

Edit Edit the file online.

Download Download the file to the local PC.

Delete Delete a file

File content The email content is displayed.

Click this icon to add review comments.

● Blame: View the change history of a file and trace operations.

On this tab page, a modifier corresponds to their modified content. You can a
record to view the commit details.

● History: View the commit history of the file.

On this page, you can perform the following operations on the commit
history:

– Click a commit name to go to the commit details page.

– provides the following functions:

▪ Create Branch.

▪ Create Tag: You can create a tag for this commit. (Introduction)

▪ Cherry-Pick: Use the commit as the latest commit to overwrite a
branch. It is used to retrieve a version.

▪ Revert: undoing this commit

▪ Browse Code.

● Comparison: compares the committed differences.

The differences compared on the CodeArts Repo console are displayed in a
better way than those on the Git Bash client. You can select different commit
batches on the GUI for difference comparison.

NO TE

The comparison result shows the impact of merging from the left repository version to
the right repository version on the files in the right repository. If you want to know the
differences between the two file versions, you can adjust the left and right positions,
compare them again, and learn all the differences based on the two results.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 58

8.4.2 Managing Commits
On the Code and Commits tab pages, view the commit records and graph of the
repository.

Commits

This tab displays the entire commit records of a branch or tag in the current
repository. You can filter records by time segment, committer, commit message, or
commit ID.

Graph

The commit graph of a repository displays the entire commit history (including the
action, time, committer, commit message generated by the system or specified by
the committer) of a branch or tag and the relationship between commits in flow
chart.

You can switch between branches or tags. You can click a commit node or commit
message to go to the corresponding commit record.

NO TE

Compared with the History tab page under the Files tab page, the commit graph can
display the relationship between commits.

8.4.3 Managing Branches
Branching is the most commonly used method in version management. Branches
isolate tasks in a project to prevent them from affecting each other, and can be
merged for version release.

When you create a CodeArts Repo or Git repository, a master branch is generated
by default and used as the branch of the latest version. You can create custom
branches at any time for personalized scenarios.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 59

GitFlow
As a branch-based code management workflow, GitFlow is highly recognized and
widely used in the industry. It is recommended for you to start team-based
development.

GitFlow provides a group of branch usage suggestions to help your team improve
efficiency and reduce conflicts. It has the following features:
● Concurrent development: Multiple features and patches can be concurrently

developed on different branches to prevent intervention during code writing.
● Team collaboration: In team-based development, the development content

of each branch (or each sub-team) can be recorded separately and merged
into the project version. An issue can be accurately detected and rectified
separately without affecting other code in the main version.

● Flexible adjustment: Emergency fixes are developed on the hotfix branch
without interrupting the main version and sub-projects of each team.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 60

Table 8-4 Suggestions on using GitFlow branches

Branch Master Develop Feature_1\
2...

Release HotFix_1\2.
..

Descri
ption

Core
branch,
which is
used
together
with tags to
archive
historical
versions.
Ensure that
all versions
are
available.

Main
developmen
t branch,
which is
used for
routine
developmen
t and must
always be
the branch
with the
latest and
most
complete
functions.

Feature
developmen
t branch,
which is
used to
develop
new
features.
Multiple
branches
can exist
concurrently
. Each
branch
corresponds
to a new
feature or a
group of
new
features.

Release
branch,
which is
used to
check out a
version to
be released.

Emergency
fix branch,
which is
used to fix
bugs in the
current
version.

Validit
y

Long-term Long-term Temporary Long-term Temporary

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 61

Branch Master Develop Feature_1\
2...

Release HotFix_1\2.
..

When
to
Create

Created
when the
project
repository is
created

Created
after the
master
branch is
created.

● Created
based on
the
develop
branch
when a
new
feature
develop
ment
task is
received.

● Created
based on
the
parent
feature
branch
when the
current
feature
develop
ment
task is
split into
sub-
tasks.

Created
based on
the develop
branch
before the
first release.

Created
based on
the
correspondi
ng version
(usually the
master
branch)
when issues
are found in
the master
or bug
version.

When
to
Develo
p This
Branch

Never Not
recommend
ed

Developed
when being
created.

Never Developed
when being
created.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 62

Branch Master Develop Feature_1\
2...

Release HotFix_1\2.
..

When
to
Merge
Other
Branch
es into
This
Branch

● When
the
project
version is
frozen,
the
develop
or
release
branch
are
merged
into this
branch.

● After
bugs
found in
the
released
version
are fixed,
hotfix
branches
are
merged
into this
branch.

● After
new
features
are
develope
d,
feature
branches
are
merged
into this
branch.

● When a
new
version
starts to
be
develope
d, the
last
version
(release
or
master
branch)
is
merged
into this
branch.

After a child
feature
branch is
developed
and tested,
it is merged
into the
parent
feature
branch.

When a
version is to
be released,
the develop
branch is
merged into
this branch.

-

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 63

Branch Master Develop Feature_1\
2...

Release HotFix_1\2.
..

When
to
Merge
This
Branch
to
Other
Branch
es

- ● When a
version is
to be
released,
this
branch is
merged
into the
release
branch.

● When a
version is
to be
archived,
this
branch is
merged
into the
master
branch.

After new
features are
developed
and tested
on this
branch, it is
merged into
the develop
branch.

● When a
version is
released
and
archived,
this
branch is
merged
into the
master
branch.

● When a
new
version is
develope
d based
on a
released
version,
this
branch is
merged
into the
develop
branch
to
initialize
the
version.

When the
correspondi
ng bug
fixing task
is complete,
this branch
is merged
into the
master and
develop
branches as
a patch.

When
to End

- - After the
correspondi
ng features
are
accepted
(released
and stable)

- After the
correspondi
ng bugs are
fixed and
the version
is accepted
(released
and stable)

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 64

NO TE

GitFlow has the following rules:

● All feature branches are pulled from the develop branch.

● All hotfix branches are pulled from the master branch.

● All commits to the master branch must have tags to facilitate rollback.

● Any changes that are merged into the master branch must be merged into the develop
branch for synchronization.

● The master and develop branches are the main branches and they are unique. Other
types of branches can have multiple derived branches.

Creating a Branch on the Console

Step 1 Access the repository list.

Step 2 Click a repository to go to the details page.

Step 3 Click the Code and Branches tabs. The branch list page is displayed.

Step 4 Click Create. In the displayed dialog box, select a version (branch or tag) based on
which you want to create a branch and enter the branch name. You can associate
the branch with an existing work item.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 65

NO TE

The branch name must meet the following requirements:

● The name cannot start with a hyphen (-), period (.), refs/heads/, refs/remotes/, or
slash (/).

● Spaces and special characters such as [\<~^:?*!()'"|$&; are not supported.

● The name cannot end with a period (.), slash (/), or .lock.

● Two consecutive periods (..) are not allowed.

● The name cannot contain this sequence @{.

The name cannot be the same as another branch or tag name.

Step 5 Click OK. The branch is created.

----End

Managing Branches on the Console

You can perform the following operations in the branch list:

● Filtering branches

– My: displays all branches created by you. The branches are sorted by the
latest commit time in descending order.

– Active: displays the branches that have been developing in the past three
months. Branches are sorted by the last commit time in descending order.

– Inactive: displays the branches that have not been developed in the past
three months. Branches are sorted by the last commit time in descending
order.

– All: displays all branches. The default branch is displayed on the top.
Other branches are sorted by the last commit time in descending order.

● You can click a branch name to go to the Files tab page of the branch and
view its content and history.

● You can click a commit ID to view the content latest committed on the details
page.

● Select branches and click Batch Delete to delete branches in batches.

● You can click to associate work items with the branch.

● You can click to go to the Comparison tab page and compare the current
branch with another branch.

● Click to download its compressed package.

● You can click to the Merge Requests tab page and create a merge
request.

● Click to go to the repository settings page and set the branch as protected.

● You can click to delete a branch as prompted.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 66

NO TICE

You can download the compressed package of source code on the page only for
hosts that have configured IP address whitelists.
If you delete a branch by mistake, submit a service ticket to contact technical
support.

In addition, you can configure branches on the console.

● Merge Requests
● Default Branches
● Protected Branches

Common Git Commands for Branches
● Creating a branch

git branch <branch_name> # Create a branch based on the current working directory in the
local repository.

Example:
git branch branch001 # Create a branch named branch001 based on the current working
directory in the local repository.

If no command output is displayed, the creation is successful. If the branch
name already exists, as shown in the following figure, create a branch with
another name.

● Switching a branch
Switching a branch is to check out the branch file content to the current
working directory.
git checkout <branch_name> # Switch to a specified branch.

Example:
git checkout branch002 # Switch to branch002.

The following information shows that the switch is successful.

● Switching to a new branch
You can run the following command to create a branch and switch to the new
branch directly.
git checkout -b <branch_name> # Create a branch based on the current working directory in the
local repository and directly switch to the branch.

Example:
git checkout -b branch002 # Create a branch named branch002 based on the current working
directory in the local repository and directly switch to the branch.

The following information shows that the command is successfully executed.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 67

● Viewing a branch
You can run the corresponding command to view the local repository branch,
the remote repository branch, or all branches. These commands only list
branch names. You can switch to a branch to view specific files in a branch.
git branch # View the local repository branch.
git branch -r # View the remote repository branch.
git branch -a # View the branches of the local and remote repositories.

The following figure shows the execution result of the three commands in
sequence. Git displays the branches of the local and remote repositories in
different formats. (Remote repository branches are displayed in the format of
remote/<remote_repository_alias>/<branch_name>.)

● Merging a branch
When a development task on a branch is complete, the branch needs to be
merged into another branch to synchronize the latest changes.
git merge <name_of_the_branch_merged_to_the_current_branch> # Merge a branch into the
current branch.

Before merging a branch, you need to switch to the target branch. The
following describes how to merge branch002 into the master branch.
git checkout master # Switch to the master branch.
git merge branch002 # Merge branch002 into the master branch.

The following figure shows the execution result of the preceding command.
The merge is successful, and three lines are added to a file.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 68

NO TE

The system may prompt that a merge conflict occurs. The following shows that a
conflict occurs in the fileOnBranch002.txt file.

To resolve the conflict, open the conflicting file, manually edit the conflicting code (as
shown in the following figure), and save the file. Then run the add and commit
commands again to save the result to the local repository.

This is similar to resolving a conflict that occurs when you commit a file from the local
repository to the remote repository. For details about the working principle, see 8.5.2
Resolving Code Conflicts in an MR.
A proper collaboration mode can prevent conflicts.

● Deleting a local branch
git branch -d <branch_name>

Example:
git branch -d branch002 # Delete branch002 from the local repository. The following
information shows that the operation is successful.

● Deleting a branch from the remote repository
git push <remote_repository_address_or_alias> -d <branch_name>

Example:
git push HTTPSOrigin -d branch002 # Delete branch002 from the remote repository whose alias
is HTTPSOrigin. The following information shows that the deletion is successful.

● Pushing a new local branch to the remote repository
git push <remote_repository_address_or_alias> <branch_name>

Example:
git push HTTPSOrigin branch002 # Push the local branch branch002 to the remote repository
whose alias is HTTPSOrigin. The following information shows that the push is successful.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 69

NO TE

If the push fails, check the connectivity.
● Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@********.com

If the returned information contains connect to host **********.com port 22:
Connection timed out, your network is restricted and you cannot access CodeArts
Repo. In this case, contact your local network administrator.

● Check the SSH key. If necessary, regenerate a key and configure it on the CodeArts Repo
console. For details, see 3.2 SSH Keys. Alternatively, check whether the HTTPS
password is correctly configured.

8.4.4 Managing Tags
Git provides tags to help your team manage versions. You can use Git tags to
mark commits to manage important versions in a project and search for historical
versions.

A tag points to a commit like a reference. No matter how later versions change,
the tag always points to the commit. It can be regarded as a version snapshot that
is permanently saved (the version is removed from the repository only when being
manually deleted).

When using Git to manage code, you can search for and trace historical versions
based on commit IDs. A commit ID is a long string (as shown in the following
figure) that is difficult to remember and not identifiable, compared with version
numbers such as V 1.0.0. Therefore, you can tag and name important versions to
easily remember and trace them. For example, tag a version as myTag_V1.0.0 or
FirstCommercialVersion.

Creating a Tag for the Latest Commit on the Console

Step 1 Access the repository list.

Step 2 Click a repository to go to the details page.

Step 3 Click the Code and Tags tabs. The tag list is displayed.

Step 4 Click Create. In the following dialog box that is displayed, select a branch or tag.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 70

NO TE

The tag name must meet the following requirements:

● The name cannot start with a hyphen (-), period (.), refs/heads/, refs/remotes/, or
slash (/).

● Spaces and special characters such as [\<~^:?*!()'"|$&; are not supported.

● The name cannot end with a period (.), slash (/), or .lock.

● Two consecutive periods (..) are not allowed.

● The name cannot contain this sequence @{.

An annotated tag is generated if you enter a message (the content after -m). A lightweight
tag is generated if you do not enter a message. For details about annotated tags, see Tag
Classification.

The name cannot be the same as another branch or tag name.

Step 5 Click OK. A tag is generated based on the latest version of the branch. The tag list
is displayed.

----End

Creating a Tag for a Historical Version on the Console

Step 1 Access the repository list.

Step 2 Click a repository to go to the details page. On the Code tab page, click the Files
and History tabs.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 71

Step 3 In the historical commit list, click next to a commit record and select Create
Tag. The dialog box for creating a tag for the historical version is displayed.

NO TE

An annotated tag is generated if you enter a message (the content after -m). A lightweight
tag is generated if you do not enter a message. For details about annotated tags, see Tag
Classification.

Step 4 Click OK. A tag is generated based on the specified historical version of the
branch. The tag list is displayed.

----End

Managing Tags on the Console
● All tags in the remote repository are displayed in the tag list. You can perform

the following operations:

– Click a tag in the Tag Name column to go to the file list of the tagged
version.

– Click a commit ID to go to the commit details page.

– Click to download the file package of the labeled version in tar.gz or
zip format.

– Click to delete a tag from CodeArts Repo. (To delete the tag from the
local repository, perform the clone, pull, or -d operation.)

NO TICE

If an IP address whitelist is set for the repository, only hosts with whitelisted
IP addresses can download the repository source code on the page. If no IP
address whitelist is set for the repository, all hosts can download the
repository source code on the page.

● You can create a branch based on a tag.
● On the console, click the Files tab and click the file name of the target file.

Click the Comparison tab to compare commit records of the file.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 72

Tag Classification

Git provides two types of tags:

● Lightweight tag: is only a reference pointing to a specific commit. It can be
considered as an alias for the commit.
git tag <tag_name>

The following figure shows the information of a lightweight tag. You can find
that it is an alias of a commit.

● Annotated tag: points to a specific commit, but is stored as a complete object
in Git. Compared with lightweight tags, annotated tags contain messages
(similar to code comments). In addition to the tag name and message, the
tag information includes the name and email address of the person who
creates the tag, and tag creation time/date.
git tag -a <tag_name> -m "<message>"

The following figure shows the information of an annotated tag, which points
to a commit and contains more information than that of a lightweight tag.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 73

NO TE

Both types of tags can identify versions. Annotated tags contain more information and are
stored in a more stable and secure structure in Git. They are more widely used in large
enterprises and projects.

Common Git Commands for Tags
● Creating a lightweight tag

git tag <tag_name> # Add a lightweight tag to the latest commit.

Example:
git tag myTag1 # Add a lightweight tag myTag1 to the latest commit.

● Creating an annotated tag
git tag -a <tag_name> -m "<message>" # Add an annotated tag to the latest commit.

Example:
git tag -a myTag2 -m "This is a tag." # Add an annotated tag myTag2 to the latest commit, and the
message is "This is a tag.".

● Tagging a historical version
You can also tag a historical version by running the git log command to
obtain the commit ID of the historical version. The following uses an
annotated tag as an example:
git log # The historical commit information is displayed. Obtain the commit ID (only the
first several digits are required), as shown in the following figure. Press q to return.

git tag -a historyTag -m "Tag a historical version." 6a5b7c8db # Add tag historyTag to the
historical version whose commit ID starts with 6a5b7c8db, and the message is "Tag a historical
version.".

NO TE

● If no command output is displayed, the tag is successfully created. If the command
output is displayed, indicating that the tag name already exists (as shown in the
following figure), change the tag name and perform the operation again.

● One commit can have multiple tags with unique names, as shown in the following
figure.

● Viewing tags in the local repository
You can list all tag names in the current repository and add parameters to
filter tags when using them.
git tag

● Viewing details about a specified tag
git show <name_of_the_desired_tag>

Example:
Display the details about myTag1 and the commit information. The following
shows an example command output:
git show myTag1

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 74

● Pushing a local tag to the remote repository

– By default, tags are not pushed when you push files from the local
repository to the remote one. Tags are automatically synchronized when
you synchronize (clone or pull) content from the remote repository to the
local one. Therefore, if you want to share local tags with others in the
project, you need to run the following Git command separately.
git push <remote_repository_address_or_alias> <name_of_the_tag_to_be_pushed> # Push
the specified tag to the remote repository.

Example:

Push the local tag myTag1 to the remote repository whose alias is origin.
git push origin myTag1

– Run the following command to push all new local tags to the remote
repository:
git push <remote_repository_address_or_alias> --tags

NO TE

If you create a tag in the remote repository and a tag with the same name in the
local repository, the tag will fail to be pushed due to the conflict. In this case, you
need to delete one of the tags and push another tag again.

You can view all tags in the remote repository by referring to Managing Tags on
the Console.

● Deleting a local tag
git tag -d <name_of_the_tag_to_be_deleted>

The following shows an example of deleting the local tag tag1.

● Deleting a tag from the remote repository

Similar to tag creation, tag deletion also needs to be manually pushed.
git push <remote_repository_address_or_alias> :refs/tags/<name_of_the_tag_to_be_deleted>

The following shows an example of deleting a tag.
git push HTTPSOrigin :refs/tags/666 # Delete the tag 666 from the remote repository whose
alias is HTTPSOrigin.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 75

Obtaining a Historical Version Using Tags
If you want to view the code in a tagged version, you can check it out to the
working directory. The code can be edited but cannot be added or committed
because the checked-out version belongs only to a tag instead of a branch. You
can create a branch based on the working directory, modify the code on the
branch, and merge the branch into the master branch. The detailed steps are as
follows:

1. Check out a historical version using a tag.
git checkout V2.0.0 # Check out the version tagged with V2.0.0 to the working directory.

2. Create a branch based on the current working directory and switch to it.
git switch -c forFixV2.0.0 # Create a branch named forFixV2.0.0 and switch to it.

3. (Optional) If the new branch is modified, commit the changes to the
repository of the branch.
git add . # Add the changes to the staging area of the new branch.
git commit -m "fix bug for V2.0.0" # Save the changes to the repository of the branch.

4. Switch to the master branch and merge the new branch (forFixV2.0.0 in this
example) to the master branch.
git checkout master # Switch to the master branch.
git merge forFixV2.0.0 # Merge the changes based on the historical version into the master
branch.

NO TE

The preceding commands are used to help you understand how to obtain a historical
version using a tag. Omit or add Git commands as required.

8.4.5 Managing Comparison
Click the Code and Comparison tabs of the repository details page, you can view
the code changes between branches or between tag versions through comparison.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 76

NO TE

After comparing branches, you can create a merge request as required.

8.5 Managing MRs

8.5.1 Managing MRs
CodeArts Repo supports development of multiple branches and establishes
configurable review rules for branch merging. When a developer initiates an MR,
some repository members can be selected to participate in code review to ensure
the correctness of the merged code.

NO TE

When a merge request is created, reviewers, approvers, and mergers will be notified by
emails and .
Based on the security of the code repository, you are advised to understand and configure
the following functions before using merge requests:
● 9.3.4 Merge Requests: You can set rules for merging branches.
● 9.3.1 Protected Branches describes how to configure the merge permission on a

protected branch.

Merge Request List
On the Merge Requests tab page, you can view merge requests list page.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 77

● You can switch between tabs to view MRs in different states.
● You can click a request to go to the details page.
● You can view the brief information about the request, including the involved

branch, creation time, and creator.
● You can search for a request based on different conditions.
● You can click New in the upper left corner to create a request.

NO TE

Open: The request has entered the review or merge phase, and branches have not been
merged.

Merged: indicates that the request is approved and the branch is merged.

Closed: indicates that the request is canceled and the branch is not merged.

All: displays MRs in all states.

Creating a Merge Request

Assume that the administrator has set branch merge rules. To create an MR for a
develop branch, perform the following steps:

Step 1 Go to the details page of a target repository.

Step 2 Switch to the Merge Requests tab page.

Step 3 Click New and select the branch to be merged.

In the preceding figure, Dev (where the development task is completed) is merged
into the master branch.

NO TE

The branch of a forked repository can be selected as the source branch.

Step 4 Click Next. The system checks whether the two branches are different.
● If there is no difference between the two, the system displays a message and

the MR cannot be created.
● If the branches are different, the following Create Merge Request page is

displayed.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 78

The lower part of the Create Merge Request page displays the file differences of
the two branches and the commit records of the source branch.

Step 5 Set the parameters according to the following table.

Table 8-5 Parameter description

Parameter Description

Change
Branch

Click to return to the previous step and change the branch to be
merged.

Title Enter the MR title.

Description A default description is generated based on the merge and
commit messages of the source branch. You can modify the
description as required.

Associate
Work Items

You can choose to associate a merge action with a work item to
automatically change the status of the work item.

Mergers Mergers have permissions to merge branches (by clicking the
merge button) when all approvers approve MRs and all
discussed issues are solved (or you can set the rule to allow
merge with issues unsolved). They can also close the MR.

Reviewers Specified to participate in the merge branch review and can
raise questions to the initiator.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 79

Parameter Description

Approvers Appointed to participate in the merge branch review. You can
provide review comments (approved or rejected) or raise
questions to the initiator.

Delete
source
branch after
merge

You can choose whether to delete the source branch after
merge. The preset status in the MR settings is initially used.

Squash Enabling Squash merge keeps the history of the basic branch
clean, with meaningful commit messages, and can be easily
restored if necessary. For details, see Squash.

Step 6 Click Create Merge Request to submit the MR. The details page is displayed.

On the details page, merge rule statuses, mergers, reviewers, approvers, and
associated work items are displayed. You can view review comments, mark a
review comment as Unsolved, and view all activities related to the merge request.

● Commits: You can view commit records of the source branch.

● Files Changed: You can view the changed content in an MR and filter the
change types such as addition, modification, deletion, and renaming.

● Pipeline: You can view the information about the pipeline.

----End

NO TE

● When an MR is created, related members (reviewers and mergers) will be notified by
emails. The reviewer cannot be the creator of the merge request.

● If a single file contains 5000 different lines and there are over 100 different files, you are
advised to merge the branch using the client and then push it to CodeArts Repo.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 80

Reviewing, Approving, and Merging MRs

If you are notified of an MR as a reviewer, approver, or merger, perform the
following steps:

Step 1 Go to the details page of a target repository.

Step 2 Switch to the Merge Requests tab and click the name of the target merge request
to view details.

Step 3 Review the target merge request.

Both the reviewer and approver can review the merge request and provide review
comments. If there is no comment, the reviewer can click Review Pass to
complete the review.

Step 4 Approve the target merge request.

The reviewer can click Reject or Approve.

Step 5 Pass the gate.

Table 8-6 Merge conditions

Merge
Condition

Description

Code merge
conflicts

When the source branch code conflicts with the target branch
code, you need to resolve the conflict before proceeding to the
next step. For details about how to resolve the code conflict, see
Resolving Code Conflicts in an MR.

Review
comment
gate

After the initiator resolves the reviews of all reviewers or
approvers, the gate is passed. For details see Detailed
Description of Review Comments Gate.

Pipeline gates When the latest commit or pre-merged commit starts and
successfully executes the pipeline, the gate is passed. For details
see Detailed Description of Pipeline Gate.

E2E ticket
number not
associated

After the combination request is associated with a work item,
the gate is passed. For details see Detailed Description of E2E
Ticket Number Association Gate.

Review gate When the number of reviewers reaches the minimum number,
the gate is passed. For details see Detailed Description of
Review Gate.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 81

Merge
Condition

Description

Approval gate When the number of approvers reaches the minimum number,
the gate is passed. For details see Detailed Description of
Approval Gate.

Step 6 Merge the request.

After an initiator meets the preceding conditions, click Merger to merge the
request. Otherwise, click Close to close the request.

----End

Squash
Squash is to merge all change commit information of an MR into one and keep a
clean history. When you focus only on the current commit progress rather than the
commit information, you can use squash.

NO TE

If Squash is selected, multiple consecutive change records of the source branch can be
merged into one commit record (information of Configure Squash), and this new commit
record can be committed to the target branch.
● If the change history of the merge request contains only one commit, the commit record

in the target branch is for the source branch after Squash is selected.
● If the change history of the merge request contains multiple commits, the commit

record in the target branch contains the information of Configure Squash after Squash
is selected.

To better understand this function, perform the following operations:

Step 1 Create a repository.

Name it repo.

Step 2 Create a branch.

Name it Dev.

Step 3 Submit the creation.

Take creating a file as a commit.

Dev branch: Create two files and name them Function_1 and Function_2.

Step 4 Check the effect before Squash is enabled.

Find the Dev branch. Click the Code, Commits, and Commits tabs to view the
commit information.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 82

Step 5 Create and merge a request.

1. Set the source branch to Dev and target branch to master. Create a merge
request.
Dev branch: Name the merge request as Code Merge, select Squash, and
enter Configure Squash.

2. Complete the review and approval.

Step 6 Check the effect after Squash is enabled.

After the request is successfully merged, click the Code, Commits, and Commits
tabs, select the master branch. Compared with Step 4, the committed content has
been merged.

----End

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 83

8.5.2 Resolving Code Conflicts in an MR
When using CodeArts Repo, you may encounter the situation where two members
in the same team modify a file at the same time. Code fails to be pushed to a
CodeArts Repo repository due to the code commit conflict. The following figure
shows a push failure caused by the file change conflict in the local and remote
repositories.

NO TE

● The returned messages vary depending on Git versions and compilers but have the
same meaning.

● The information similar to "push failure" and "another repository member" in the
returned message indicates that there is a commit conflict.

● Git automatically merges changes in different lines of the same file. A conflict occurs
only when the same line of the same file is modified (the current version of the local
repository is different from that of the remote repository).

● Conflicts may occur during branch merge. The locating method and solution are
basically the same as those for the conflict during the commit to the remote repository.
The following figure shows that a conflict occurs when the local branch1 is merged into
the master branch (due to the changes in the file01 file).

Resolving a Code Commit Conflict
To resolve a code commit conflict, pull the remote repository to the working
directory in the local repository. Git will merge the changes and display the
conflicting file content that cannot be merged. Then, modify the conflicting
content and push it to the remote repository again (by running the add, commit,
and push commands in sequence).

The following figure shows that there is a file merge conflict when you run the
pull command.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 84

Modify the conflicting file carefully. If necessary, negotiate with the other member
to resolve the conflict and avoid overwriting the code of other members by
mistake.

NO TE

git pull combines git fetch and git merge. The following describes the operations in detail.
git fetch origin master # Pull the latest content from the master branch of the remote host.
git merge FETCH_HEAD # Merge the latest content into the current branch.

During merge, a message indicating that the merge fails due to a conflict is displayed.

Example: Conflict Generation and Resolution

The following shows an example to help you understand how a conflict is
generated and resolved.

A company uses CodeArts Repo and Git to manage a project. A function (the
file01 file is modified) of the project is jointly developed by developer 1 (01_dev)
and developer 2 (02_dev). The two developers encounter the following situation.

1. file01 is stored in the remote repository. The following shows the file content.

2. 01_dev modifies the second line of file01 in the local repository and
successfully pushes the file to the remote repository. The following shows the
file content in the local and remote repositories of 01_dev.

3. 02_dev also modifies the second line of file01 in the local repository. When
02_dev pushes the file to the remote repository, a conflict message is
displayed. The following shows the file content in the local repository of
02_dev, which is conflicting with that in the remote repository.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 85

4. 02_dev pulls the code in the remote repository to the local repository, detects
the conflict starting from the second line of the file, and immediately contacts
01_dev to resolve the conflict.

5. We find that they both modified the second line and added content to the
last line, as shown in the following figure. Git identifies the content starting
from the second line as a conflict.

NO TE

Git displays the changes made by the two developers and separates them using
=======.
● The content between <<<<<<<HEAD and ======= indicates the changes of the

local repository in the conflicting lines.
● The content between ======= and >>>>>>> indicates the changes of the remote

repository in the conflicting lines, that is, the pulled content.
● The content after >>>>>>> is the commit ID.
● Delete <<<<<<<HEAD, =======, >>>>>>>, and commit ID when resolving the

conflict.

6. The two developers agree to retain all changes after discussion. After 02_dev
modifies the content, the modified and added lines are saved in the local
repository of 02_dev, as shown in the following figure.

7. 02_dev pushes the merged changes to the remote repository (by running add,
commit, and push commands in sequence). The following shows the file
content in the remote repository after a successful push. The conflict is
resolved.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 86

NO TE

In the preceding example, TXT files are used for demonstration. In the actual situation, the
conflict display varies in different text editors and Git plug-ins of programming tools.

Preventing a Conflict

Repository preprocessing before code development can prevent commit and
merge conflicts.

In Example: Conflict Generation and Resolution, 02_dev successfully resolves the
conflict in the commit to the remote repository. For 02_dev, the latest code version
of the local repository is the same as that of the remote repository. For 01_dev,
version differences still exist between the local and remote repository. A conflict
will occur when 01_dev pushes code to the local repository. The following
describes methods to resolve the conflict.

Method 1 (recommended for beginners):

If your local repository is not frequently updated, clone the remote repository to
the local repository to modify code locally, and commit the changes. This directly
resolves the version differences. However, if the repository is large and there are a
large number of update records, the clone process will be time-consuming.

Method 2:

If you modify the local repository every day, create a develop branch in the local
repository for code modification. When committing code to the remote repository,
switch to the master branch, pull the latest content of the master branch in the
remote repository to the local repository, merge the branches in the local
repository, and resolve the conflict. After the content is successfully merged into
the master branch, commit it to the remote repository.

Resolving a Merge Conflict on the Console

CodeArts Repo allows you to manage branches. The following simulates a
conflicting MR and describes how to resolve it.

Step 1 Create a repository.

Step 2 Create a file named file03 on the master branch in the repository. The initial
content is as follows:

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 87

Step 3 Create a branch named branch007 based on the master branch.

The content in the master branch is the same as that in branch007. The following
describes how to make them different.

Step 4 In the master branch, modify file03 as shown in the following figure, and enter
the commit message modify in master.

Step 5 Switch to branch007, modify file03 as shown in the following figure, and enter
the commit message modify in branch007. Then the two branches are different,
that is, a conflict occurs.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 88

Step 6 Create an MR to merge branch007 to the master branch. Click Create Merge
Request to submit the MR.

Merge request details page is displayed. You can also click the name of the merge
request in the merged requests list to access this page. Merge conflict: unsolved
displays on the details page. You are advised to Fix them online or offline.

Step 7 Perform the following operation to resolve the conflict:

● Fix them online (recommended for small code volume)

a. Click Fix them online. The following page is displayed, showing the code
conflict.

b. If the conflict cannot be resolved by overwriting the file, click to go
to the Manual Editing page, as shown in the following figure. The
conflict display format is similar to that in Example: Conflict Generation
and Resolution.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 89

c. Manually modify the code to resolve the conflict and commit the
changes.

NO TE

Enter a commit message.
In the preceding figure, the following signs are used for conflict display and
separation: <<<<, >>>>, and ====. Delete the lines where the signs are located
when modifying code.

● offline (recommended for large-scale projects)
Click offline. The following page is displayed. Perform the operations as
prompted.

NO TE

CodeArts Repo automatically generates Git commands based on your branch name. You
only need to copy the commands and run them in the local repository.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 90

Step 8 After the conflict is resolved by using either of the preceding methods, you can
click Merge to merge branches. The system displays a message indicating that the
merge is successful.

You can also follow the instructions in 8.5.1 Managing MRs.

Now, the content of the master and branch007 branches is the same. You can
switch between branches to check the content.

----End

8.5.3 Detailed Description of Review Comments Gate

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Configure the gate.

● Select Merge after all reviews are resolved and click Submit to save the
settings. The access control is enabled.

● Deselect Merge after all reviews are resolved and click Submit to save the
settings. The access control is closed.

----End

Effect of Gate Triggering

The reviewers or approvers can move the cursor to the code line in Files Changed
of the Merge Request and click the icon to add review comments.
Alternatively, the reviewers or approvers can directly add review comments in
Details > Comments of the Merge Request.

● Review comment gate: passed: It is displayed when there is no review
comments in the merge request, or all review comments do not need to be
resolved or have been resolved.

● Review comment gate: failed: It is displayed when the review comments in
the Merge request are not resolved.

Passing of the Gate

After you have resolved the issue raised in the review comments, you can switch
the status of the review comments from Unresolved to Resolved in Details >
Review Comments of the Merge Request. In this case, the status of the review
comments is displayed as Review comment gate: passed.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 91

8.5.4 Detailed Description of Pipeline Gate
NO TE

Pipeline gate supports only merge requests whose merge mechanism is Approval.

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Click Create to set a branch policy for the target branch.

Step 3 Configure the gate.
● Select Enable pipeline gate under the policy and click OK to save the

settings. The gate is enabled.
● Deselect Enable pipeline gate under the policy and click OK to save the

settings. The gate is closed.

----End

Effect of Gate Triggering
● Merge into pipeline gate: passed: It is displayed when the pipeline is

successfully started after the latest commit or pre-merge commit operation is
performed.

● Merge into pipeline gate: failed: It is displayed when the repository has no
associated pipeline task or the latest commit or pre-merge commit fails to
start the pipeline.

Passing of the Gate

Step 1 Choose CICD > Pipeline.

Step 2 Click Create Pipeline and enter the following information:
● Name: Enter a custom name.
● Pipeline Source: Select Repo.
● Repository: Select the target code repository for which you want to create a

merge request.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 92

● Default Branch: Select the target branch of the merge request.

Step 3 Click Next, select the target template as required, and click OK.

Step 4 After the task is created, the system automatically switches to the Task
Orchestration tab page in the task details and switches to the Execution Plan tab
page.

Step 5 Enable Merge Request Event Triggering and select the following trigger events
based on the site requirements:
● Create: triggered when an MR is created.
● Update: triggered when the content or setting of an MR is updated.
● Merge: triggered when an MR is merged. The code submission event will also

be triggered.
● Reopen: triggered when an MR is reopened.

Step 6 Configure other information about the pipeline task and click Save.

Step 7 Return to the CodeArts Repo and trigger the event selected in Execution Plan to
enable the repository to start the pipeline task.

----End

8.5.5 Detailed Description of E2E Ticket Number Association
Gate

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Configure the Gate.
● Select Must be associated with CodeArts Req and click Submit to save the

settings. The gate is enabled.
● Deselect Must be associated with CodeArts Req and click Submit to save

the settings. The gate is closed.

----End

Effect of Gate Triggering
● E2E ticket number: associated: It is displayed when the merge request is

successfully associated with the work item.

● E2E ticket number: not associated: It is displayed when the merge request
has no associated work item.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 93

Passing of the Gate

Step 1 Click the target project name to access the project.

Step 2 On the Work Items tab, click Create Work Item and choose Task from the drop-
down list. The page for creating a work item is displayed.

Step 3 Enter a title, for example, Sprint 1.

Retain the default values for other parameters. Click Save.

Step 4 Choose Code > CodeArts Repo.

Step 5 Click a repository name to go to the target repository.

Step 6 Switch to the Merge Requests tab page and click the name of the target merge
request to access the target merge request.

Step 7 On the Details page, click the icon next to Associated Work Items to search
for and select the target work item.

Step 8 Click OK. The E2E ticket number is associated.

----End

8.5.6 Detailed Description of Review Gate

NO TE

The review gate supports only the merge requests whose merge mechanism is Approval.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 94

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Click Create to configure a branch policy for the target branch.

Step 3 Configure the Gate.
● Set Reviewers Required to a number except 0 and click OK to save the

settings. The gate is enabled.
● Set Reviewers Required to 0 and click OK to save the settings. The gate is

closed.

----End

Effect of Gate Triggering
● Review gate: passed: It is displayed when the number of reviewers who give

pass reaches the Reviewers Required.

● Review gate: failed: It is displayed when the number of reviewers who give
pass does not reach the Reviewers Required.

Passing of the Gate
After completing the review, the reviewer needs to choose Details > Review Gate
and click Pass. The review is passed. For details, see Setting Branch Policies.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 95

8.5.7 Detailed Description of Approval Gate

NO TE

The approve gate supports only the merge requests whose merge mechanism is Approval.

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Click Create to configure a branch policy for the target branch.

Step 3 Configure the Gate.

● Set Approvals Required to a number except 0 and click OK to save the
settings. The gate is enabled.

● Set Approvals Required to 0 and click OK to save the settings. The gate is
closed.

----End

Effect of Gate Triggering
● Approval gate: passed: It is displayed when the number of approvers who

give pass reaches the Approvals Required.

● Approal gate: failed: It is displayed when the number of approvers who give
pass does not reach the Approvals Required.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 96

Passing of the Gate
After completing the approval, the approvers need to choose Details > Approval
Gate and click Pass. The approval is passed. For details, see Setting Branch
Policies.

8.6 Viewing Review Records of a Repository
On the Reviews tab page of the repository details page, you can view the review
information of the repository from MRs and commits. You can filter records based
on the filter criteria.

Table 8-7 Review record parameters

Parameter Description

Status Review records are classified into three statuses: Unresolved,
Resolved, and Resolve Not Needed.

Review
comment

Comment provided by the reviewer

Approver Reviewer who provides the review comment

Review date Date when the reviewer submits the review comments

Assign to Assign the task to the default or specified personnel.

Adding Comments on the Reviews for MR Tab
Method 1: Go to the details page of the target merge request and add a
comment at the bottom of the page.

Method 2: Go to the details page of the target merge request, click Files

Changed, and click the icon next to a code line in the code file to add a
review.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 97

Adding Comments on the Reviews for Commit Tab

Method 1: In the code file, click next to a line of code to add review
comments.

Method 2: On the Commits tab, click a commit to switch to the comment page
and add review comments.

Method 3: On the Commits page, click the Files Changed submenu and click the

 icon next to a code line to add a review.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 98

8.7 Viewing Associated Work Items

8.7.1 Introduction
Work item is used to track work content in CodeArts Req. A work item usually has
a unique ID and a description. It can be a requirement, bug, or task. In CodeArts
Req, work item is a work content list that supports GUI-based management.

You can use the following associations and configure E2E Tracing.

● Commit association
● Create a branch association.

You can select the target work item under Associated Work Items on the
page for creating a branch.

● Merge request association
You can select the target work item under Associated Work Items on the
page for creating a merge request.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 99

NO TE

CodeArts Req: a CodeArts service that provides R&D teams with efficient collaboration
services. You can create multiple Agile Scrum and Lean Kanban projects to manage
requirements, track bugs, create project Wiki, host documents in the cloud, analyze
statistics, and manage person-hours.

Preparations

Step 1 (Optional) Configure the commit transition status.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 100

NO TE

By default, the code commit status is configured as follows:
● The fix keyword is associated with the Resolved target state (enabled by default).
● The close keyword is associated with the Closed target state (disabled by default).
● The resolve keyword is associated with the Resolved target state (enabled by default).
In project settings, a project manager or another role with project setting permission can
set three commit message keywords (such as fix, close, and resolve) for different work
item types (Epic, Feature, Story, Task, and Bug). You can associate each keyword with a
target status (for example, Resolved or Closed). The work item status can also be
customized.
The following describes how to associate the close keyword to Rejected in a Task work
item.

1. Click the target project name to access the project.
2. Find the code commit status corresponding to a task, as shown in the

following figure.

3. Click the Target Status of close, set it to Rejected, and set Apply to .
The settings are automatically saved.
Then, you can use the close keyword in the commit message to change the
status of a Task work item to Rejected when committing local code.
Example:
git commit -m "close #<task_work_item_id> <commit_message>"

Step 2 Create a work item.

1. Click the target project name to access the project.
2. On the Work Items tab, click Create Work Item and choose Task from the

drop-down list. The page for creating a work item is displayed.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 101

3. Enter a title, for example, Sprint 1.
Retain the default values for other parameters. Click Save.

NO TE

The work item management page is displayed. You can view the work item ID and the
status is New.
In this example:
– The ID of task01 is 708206208.
– The ID of task02 is 708206209.
On the project homepage, choose Work > Work Items to obtain a work item ID.

----End

8.7.2 Commit Association
With CodeArts Repo, you can associate each code commit with a work item of
CodeArts Req.

● Associated work items help developers accurately record tasks for fixing bugs
and developing new features.

● Associated work items allow project managers to view information such as
change committer and committed content involved in each requirement and
bug fixing task.

NO TE

Commit: You can commit and save operations on files in the working directory, including
creating, editing, and deleting files. The following shows the commit command, in which
the -m parameter is mandatory and followed by the commit message.
git commit -m <commit_message>

On the CodeArts Repo console, a changed file can be saved only after you enter a
commit message. Each saving operation on the console is a commit, and the
mandatory message corresponds to the content after -m in the commit
command.

CodeArts Repo automatically associates work items with code by capturing
keywords from the commit message after -m. The most commonly used keyword

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 102

is fix, which is the recommended keyword in the prompt. The keyword must meet
the following format:
git commit -m "fix #<work_item_id> <commit_message>"

If a work item is successfully associated, the system automatically changes the
work item status based on the configured code commit status transition. By
default, the fix keyword sets the work item to the resolved state.

Example:
git commit -m "fix #123456 fixed this bug"

The work item 123456 is set to the resolved state after being pushed to CodeArts
Repo.

CodeArts Repo allows you to associate work items with code on the local PC or on
the console. The following describes the two methods.

NO TE

● Only members of the same project and repository can associate work items with code.
● For the work item creator, specified modifier, or account (such as the project manager)

that has the permission to modify all work items in the project, their association
operations can change the work item status (new or resolved) and generate comment
records. In the association records, Transition successful is displayed in the Result
column. When you use an unauthorized account to perform operations, only association
records are generated. The work item status is not changed, no comment record is
generated, and Association successful is displayed in the Result column.

Associating a Work Item with Locally Committed Code
Prepare the Git environment on the local PC. For details, see 2.1 Installing and
Configuring Git. If you can access the repository (the corresponding remote
repository has been associated), perform the following operations:

Create a file on the local master branch and push the file to the remote repository.
During the push, use the fix keyword in -m to associate the work item task01
with code.

NO TE

● In this example, the master branch is modified to simplify the process so that you can
quickly understand how to associate a work item with code committed on the local PC.

● Do not modify the master branch in the actual situation. It is recommended that you
create a branch for file operations, merge the changed file into the master branch, and
push the master branch to the remote repository. (This is a default rule and good habit.)

Step 1 Right-click in the local repository folder to open the Git Bash client.

Step 2 Check whether the remote repository address is successfully associated.
git remote -v # View the remote repository address associated with the local repository.

In the following figure, the underlined part indicates the remote repository address
associated with the local repository, and the information before the address is the
alias of the remote repository on the local PC.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 103

If the associated repository is not the one you want or the repository is not
associated, clone the desired repository to the local PC.

After the clone is successful, run the git remote -v command again to verify the
association.

Step 3 Check the repository status and switch to the master branch. (Skip this step for a
repository cloned in the previous step.)
git status # Check the repository status. You can view the current branch and whether there are
unsaved, uncommitted, and unpushed changes on the branch.
git checkout master # Switch to the master branch. Run the command when the current branch is not the
master branch.

Step 4 Create a file in the local repository folder and name the file fileFor708206208.

Step 5 Add the new file to the staging area using Git Bash.
git add fileFor708206208

Step 6 Commit the operation using Git Bash.
git commit -m "fix #708206208 Task01" #/ Use the fix keyword to associate task 01 whose ID is
708206208.

NO TE

708206208 is the ID of task01.

Step 7 Push the committed content to the associated CodeArts Repo repository using Git
Bash.
git push

The command output varies depending on the repository structure. If 100% or
done is displayed for all steps, the push is successful. Push failures are usually
caused by invalid keys.

Step 8 Verify the association result.

Go to the work item list and locate the work item whose ID is 708206208 to view
its details.

● The status is Resolved.
● An associated code commit record is added. You can click the commit ID to

view the details.
● A comment is automatically generated to describe the work item association.

----End

Associating Work Items with Code Committed on the Console

Step 1 Go to the repository details page.

Step 2 Create a file, enter a commit message starting with fix #708206209, and set
other parameters as required. The following figure shows an example.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 104

NO TE

708206209 is the ID of task02.

Step 3 Click OK. The system performs the following operations on the CodeArts Repo
repository:
Writes content to the new file.
git add .
git commit -m "fix #708206209 Task02"

That is, the system commits the new file and associates it with the task02 work
item using the fix keyword in the -m parameter.

Step 4 Verify the association.

View the task02 work item.

● The status is Resolved.
● An associated code commit record is added. You can click the commit ID to

view the details.
● A comment is automatically generated to describe the work item association.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 105

----End

8.8 Viewing Repository Statistics
On the Repository Statistics tab page in the repository details, you can view the
following repository statistics:

● Repository summary: Displays the Git repository capacity, LFS capacity, and
the number of branches, tags, repository members, and commits. You can
select a branch, and the statistical scope of commit trend, contributors, and
commit overview will be changed, but the repository summary will not be
affected.

● Languages: displays the distribution of each language in the current branch of
the repository.

● Commit trend: displays the commit distribution of a branch in the repository.
● Contributors: collects statistics on the contribution of code committers in a

branch (number of commits and number of code lines).
● Commit overview: collects statistics on code commits by different dimensions

(weekly, daily, and hourly).

NO TE

● Developers and roles with higher permissions can trigger the collection of contributor
and language statistics.

● Due to resource restrictions, statistics can be collected for each repository ten times a
day.

● Each user can collect statistics for 1000 times a day.

● After the statistics are complete, the number of added and deleted code lines of each
user is displayed before the deadline.

● Commits (an operation that combines two or more historical development records) of
the merge node are not counted.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 106

8.9 Viewing Activities
Access a repository and click the Activities tab page to view all activities of the
current repository.

● All: This tab displays all operation records of the repository.

● Push: displays all push operation records of the repository, such as code push
and branch creation and deletion.

● Merge Request: displays the operation records of all merge requests in the
repository. You can click the sequence number of a merge request to view
details, such as creating, closing, re-opening, and merging a merge request.

● Review: This tab displays all review comments of the repository. You can click
the commit nID to view details such as adding or deleting comments.

● Member: displays the management records of all members in the repository,
for example, adding or removing members and editing member permissions.

NO TE

● The displayed information includes the operator, operation content, and operation time.

● You can specify search criteria, such as the time range and operator, to filter and query
data.

8.10 Managing Repository Members

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 107

8.10.1 IAM Users, Project Members, and Repository Members
Repository members come from project members of the project to which the
repository belongs. Project members mainly come from IAM users of tenants. In
addition to the tenant to which the project creator belongs, IAM accounts of other
tenants can be invited to join the project. The following figure shows the
relationships between IAM users, project members, and repository members.

Table 8-8 Mapping between project roles and repository roles

Project Role Repository Role

Project manager Administrator

Developer Developer

Test manager Viewer

Tester

Participant

Viewer

O&M manager

Custom role The repository role can be set as a
committer, developer, or viewer by a project
creator.

8.10.2 Configuring Member Management
You can manage repository members on the Members tab page. Only the
repository creator (owner) and administrator can manage repository members.
Other members can only view the repository member list. The following procedure
shows how to configure member management.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 108

NO TE

Currently, CodeArts Repo only allows you to import project members as repository
members. For details about how to add project members or modify project member roles,
see Member Management.

Automatically Synchronizing Project Members to the Repository
Configure Member Role Synchronization to synchronize project roles to the
repository. For details about the synchronization policies, see Table 8-9.

Table 8-9 Member role synchronization

Item Project Role Repositor
y Role

Allowed Operation

—— Project manager Administr
ator

——

Allow
developers
to access the
repository

User-defined
project role
(Committer
permission)

Committe
r

● Set the role as a
committer.

● Set the role as a developer
● Set the role as a viewer.
● Remove the member.

Developer Developer ● Set the role as an
administrator.

● Set the role as a
committer.

● Set the role as a viewer.
● Remove the member.

Custom role
(developer
permission)

● Set the role as a developer
● Set the role as a viewer.
● Remove the member.

Allow
viewers to
access the
repository

Test manager Viewer Remove the member.

Tester

Participant

Viewer

Custom role
(viewer
permission)

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 109

https://support.huaweicloud.com/eu/usermanual-projectman/devcloud_hlp_00026.html

NO TE

● By default, a project manager is the repository administrator. If you want to move the
project manager out of the repository, you need to adjust the role of the project
manager in the project settings.

● If you select a policy in Member Role Synchronization, related users added to the
project are automatically synchronized to the repository.

● If you deselect policies in Member Role Synchronization and click Synchronize, related
members will be removed immediately.

● On the repository list page, you can select Synchronize Roles to modify the repository
role mapped from a custom project role as a project creator.

Manually Adding Project Members to the Repository

NO TICE

Manually configured repository members will be overwritten by Automatically
Synchronizing Project Members to the Repository. You are advised to use either
of the two functions.

Click Add Member. On the displayed dialog box, select a member from the
member list of the corresponding project and add the member to the repository. A
default repository role is assigned to the member based on the project role. For
details about the role mapping, see the following table.

Table 8-10 Mapping between project roles and repository roles

Project Role Repository Role Allowed Operation

Project manager Administrator
(default)

● Set the role as a committer.
● Set the role as a developer.

Developer ● Set the role as an administrator.
● Set the role as a committer.
● Remove the member.

Developer Administrator ● Set the role as a committer.
● Set the role as a developer.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 110

Project Role Repository Role Allowed Operation

Developer
(default)

● Set the role as an administrator.
● Set the role as a committer.
● Set the role as a viewer.
● Remove the member.

Viewer ● Set the role as a committer.
● Set the role as a developer.
● Remove the member.

Test manager Viewer (default) Remove the member.

Tester

Participant

Viewer

O&M manager

Custom role Committer ● Set the role as a committer.
● Set the role as a developer.
● Set the role as a viewer.
● Remove the member.

Developer ● Set the role as a developer.
● Set the role as a viewer.
● Remove the member.

Viewer (default) Remove the member.

NO TE

If the project-level member list is empty, the project does not have members other than the
repository creator. Add project members.

8.10.3 Repository Member Permissions

Repository Creation Permission

Table 8-11 Repository creation permission of project roles

Operation Project Manager Developer Others

Create
repositories

√ √ -

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 111

Repository Operation and Viewing Permission

Type Operatio
n

Cre
ato
r

Ad
mi
nis
tra
tor

Com
mitte
r

De
vel
op
er

Vi
ew
er
(R
ep
osi
tor
y
M
e
m
be
r)

Remarks

Code Access
code
online

√ √ √ √ √ -

Edit code
online

√ √ √ √ × If a protected branch is set,
permissions of this protected
branch are used instead.

Downloa
d code
online

√ √ √ √ √ -

Local
code
clone

√ √ √ √ √ -

Local
code
push

√ √ √ √ × If a protected branch is set,
permissions of this protected
branch are used instead.

Fork Fork a
project

√ √ √ √ √ When you select a project for
the Fork repository, only the
projects for which you have
the project-level developer
permission or higher are
displayed.

Mem
bers

Add a
member

√ √ × × × -

Edit a
member

√ √ × × × -

Remove
a
member

√ √ × × × -

Approve
a
member

√ √ × × × -

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 112

Type Operatio
n

Cre
ato
r

Ad
mi
nis
tra
tor

Com
mitte
r

De
vel
op
er

Vi
ew
er
(R
ep
osi
tor
y
M
e
m
be
r)

Remarks

View a
member

√ √ √ √ √ -

MR Create
an MR

√ √ √ √ × -

View an
MR

√ √ √ √ √ -

Merge
an MR

√ √ √ × × 1. If a protected branch is
set, permissions of this
protected branch are used
instead.

2. Developers cannot merge
MRs by default. MRs can
be merged by developers
only when the target
branch is set as a
protected branch and
developers have MR
permissions.

Edit an
MR
(Open)

√ √ √ × × 1. The MR creator can
perform this operation,
but the MR creator must
be a developer or role
with higher permissions.

2. The √ role can operate all
MRs, including MRs
created by others and MRs
created by yourself.

Close an
MR

√ √ √ × ×

Re-open
an MR

√ √ √ × ×

Edit a
merged
MR
(Merged)

× × × × × -

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 113

Type Operatio
n

Cre
ato
r

Ad
mi
nis
tra
tor

Com
mitte
r

De
vel
op
er

Vi
ew
er
(R
ep
osi
tor
y
M
e
m
be
r)

Remarks

Cherry-
pick an
MR
(generat
e an MR)

√ √ √ √ × A temporary branch
containing cherry-pick is
automatically generated. The
cherry pick operation fails in
the following scenarios:
1. If all branches are

protected branches and
the operator does not
have the permission to
create a branch (push),
the operation fails.

2. If the branch policy is
configured and the
temporary branch does
not meet the policy, the
operation fails.

Revert
an MR
(generat
e an MR)

√ √ √ √ × A temporary branch
containing revert is
automatically generated. The
revert operation fails in the
following scenarios:
1. If all branches are

protected branches and
the operator does not
have the permission to
create a branch (push),
the operation fails.

2. If the branch policy is
configured and the
temporary branch does
not meet the policy, the
operation fails.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 114

Type Operatio
n

Cre
ato
r

Ad
mi
nis
tra
tor

Com
mitte
r

De
vel
op
er

Vi
ew
er
(R
ep
osi
tor
y
M
e
m
be
r)

Remarks

Cherry-
pick an
MR
(No MR
is
generate
d, and
new
code is
directly
merged
into the
related
branch.)

√ √ √ √ × If a protected branch is set,
permissions of this protected
branch are used instead.

Revert
MR
(No MR
is
generate
d, and
new
code is
directly
merged
into the
related
branch.)

√ √ √ √ ×

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 115

Type Operatio
n

Cre
ato
r

Ad
mi
nis
tra
tor

Com
mitte
r

De
vel
op
er

Vi
ew
er
(R
ep
osi
tor
y
M
e
m
be
r)

Remarks

Delete
the
source
branch

√ √ √ √ × 1. The source branch can be
deleted only when MR is
performed between
repository branches and
the source branch is not
protected.

2. If the Fork repository has
committed an MR to the
source repository, the
source branch of the
source repository cannot
be deleted.

3. A protected source branch
cannot be deleted.

Vote
scoring
in the
scoring
mechanis
m

√ √ √ √ √ 1. All repository members
can score the MR even if
they are not configured as
scorers of this MR.

2. By default, developers and
roles with lower
permissions can score
from -1 to 1, and
committers and roles with
higher permissions can
score from -2 to 2.

Review
in the
approval
mechanis
m

√ √ √ √ √ Only MR reviewers can
review the MR.

Approve
in the
approval
mechanis
m

√ √ √ × × Only MR approvers and √
roles can review MRs.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 116

Type Operatio
n

Cre
ato
r

Ad
mi
nis
tra
tor

Com
mitte
r

De
vel
op
er

Vi
ew
er
(R
ep
osi
tor
y
M
e
m
be
r)

Remarks

Delete
an MR

× × × × × No one can delete an MR.

Score Score √ √ √ √ × The repository configuration
prevails:
1. If Developers and above

is selected, developers or
users with higher
permissions can give a
score.

2. If Committers and above
is selected, committer or
or users with higher
permissions can give a
score.

Revie
ws

Add a
review

√ √ √ √ √ You can add a review for
which you have permission to
view MR.

Edit a
review

× × × × × Only reviewers can edit their
reviews.

Delete a
review

× × × × ×

Reply a
review

√ √ √ √ √ You can reply a review for
which you have permission to
view.

View a
review

√ √ √ √ √ You can view all reviews for
which you have permission to
view MR.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 117

Type Operatio
n

Cre
ato
r

Ad
mi
nis
tra
tor

Com
mitte
r

De
vel
op
er

Vi
ew
er
(R
ep
osi
tor
y
M
e
m
be
r)

Remarks

Resolve a
review

√ √ √ × × 1. When the severity of
review is suggestion: MR
creator, reviewer,
committers and roles with
higher permission can
operate.

2. When the severity of
review is minor, major or
fatal: Reviewer,
committers, and roles with
higher permission can
operate, but the MR
creator (Even if with
supported roles) cannot
operate.

Pipeli
ne

Trigger
an MR
pipeline

√ √ √ √ × The pipeline execution plan is
enabled.

Branc
hes

Create a
branch

√ √ √ √ × 1. If Developers cannot
create branches is
selected, this operation
cannot be performed.

2. If Committers cannot
create branches is
selected, this operation
cannot be performed.

Edit a
branch

√ √ √ √ ×

Delete a
branch

√ √ √ √ × A protected branch cannot be
deleted by any user.

View a
branch

√ √ √ √ √ -

Tag Create a
tag

√ √ √ √ × If Developers cannot create
tags is selected, this
operation cannot be
performed.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 118

Type Operatio
n

Cre
ato
r

Ad
mi
nis
tra
tor

Com
mitte
r

De
vel
op
er

Vi
ew
er
(R
ep
osi
tor
y
M
e
m
be
r)

Remarks

Delete a
tag

√ √ × × × A protected tag cannot be
deleted by any user.

View a
tag

√ √ √ √ √ -

Settin
gs

View
settings

√ √ × × × -

Edit
settings

√ √ × × × -

Rename
a
repositor
y

√ × × × × -

Transfer
repositor
y
ownershi
p

√ × × × × -

Repos
itory

Create a
repositor
y

√ √ √ √ × -

Delete a
repositor
y

√ √ × × × -

Display a
repositor
y

√ √ √ √ √ The repository is displayed for
all repository members.

Activi
ties

View
updates

√ √ √ √ √ -

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 119

Type Operatio
n

Cre
ato
r

Ad
mi
nis
tra
tor

Com
mitte
r

De
vel
op
er

Vi
ew
er
(R
ep
osi
tor
y
M
e
m
be
r)

Remarks

Assoc
iated
work
items

View
associate
d work
items

√ √ √ √ √ -

Hom
e

View
home

√ √ √ √ √ -

Repos
itory
statis
tics

View the
statistics

√ √ √ √ √ -

Update
the
statistics

√ √ √ √ × -

SSH
and
HTTP
settin
gs

View and
edit

√ √ √ √ √ -

IP
addre
ss
white
list

View and
edit

× × × × × The administrator can view
and edit the information.

NO TE

For details about how to set a protected branch policy, see 9.3.1 Protected Branches.

CodeArts Repo
User Guide 8 Using CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 120

9 Configuring CodeArts Repo

9.1 General Settings

9.2 Repository Management

9.3 Policy Settings

9.4 Service Integration

9.5 Security Management

9.1 General Settings

9.1.1 Repository Information
To view and modify the repository information, choose Settings > General
Settings > Repository Information on the repository details page.

The settings take effect only for the repository configured.

Only the repository administrator and owner can view the page and have the
setting permission.

Repository Description: remarks field when the template is open-source (public
example template). It is used to facilitate search.

Visibility

● Private: Only repository members can access and commit code.
● Public: Read-only for visitors and hidden from repo lists and search results.
● Public template: The repository will be shared as a template in the whole

site. Template Title and Author are mandatory

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 121

9.1.2 Notifications

CodeArts Repo Notifications

To set notifications, choose Settings > General Settings > Notifications on the
repository details page.

The settings take effect only for the repository configured.

Only the repository administrator and owner can view the page and have the
setting permission.

Email Notification

NO TE

If all notification types in the notification settings are disabled, the system sends an email
notification to the creator or administrator by default when you perform the following
operations:

● When a repository is created, an email notification is sent to the creator or
administrator by default.

● When a non-repository member applies to join a repository, an email notification is sent
to the creator by default.

● When a repository is frozen or closed, an email notification is sent to the creator or
administrator by default.

● Freeze a repository: Send email notifications to the repository owner and
administrators by default. This cannot be manually configured.

When a service is disabled or a repository is in arrears, the repository is
frozen. No operation can be performed on the frozen repository.

Within 30 days after a repository is frozen, you can renew the repository or
enable services to unfreeze the repository.

● Close a repository: Send email notifications to the repository owner and
administrators by default. This cannot be manually configured.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 122

Closing a repository is equivalent to permanently deleting the repository.
When the repository is frozen for more than 30 days, the repository will be
closed.

● Delete a repository: Send email notifications to the repository owner,
administrator, committer, developer, and viewer. This can be manually
configured.

● Capacity warning: This parameter is not enabled by default. You can
manually set the capacity warning threshold as required. When the capacity
of a single repository exceeds the threshold, the system emails the repository
owner, administrators, committers, and developers. The warning email is sent
only once unless you update the warning settings.

● Open: Push states of the merge request (including create and re-open) to
specified roles by email. By default, the email notification is disabled. You can
enable it to send email notifications to scorers, approvers, reviewers, and
mergers.

● Update: Push code updates of the branch associated with the merge request
to specified roles by email. By default, the email notification is disabled. You
can enable it to send email notifications to scorers, approvers, or reviewers.

● Merge: Send email notifications to the MR creator by default. You can
determine whether to also send an email notification to the merger.

● Review: Send email notifications to the MR creator by default. You can also
disable the notification.

● Approve: Send email notifications to the MR creator by default. You can
manually set not to send the notification.

● Comment: Send email notifications to the MR creator by default. You can
also disable the notification.

● Resolve Comment: Send email notifications to the MR creator by default. You
can manually set not to send the notification.

NO TE

If no email notification is received, go to Notifications to check whether the email and
email notifications are enabled.
If you want to know repository changes in other ways than emails, you can choose Service
Integration > Webhooks and customize notifications in your own system (third-party
system).

CodeArts Notifications
CodeArts provides configurable notifications. On the CodeArts homepage, click
your username in the upper right corner. In the dialog box that is displayed, click
This Account Settings to configure notifications.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 123

Choose General Settings> Notifications. Enable or disable and email
notifications, and change the email address for receiving notifications.

You can also set a Do-Not-Disturb (DND) period so that you will not receive email
notifications within the specified period.

9.2 Repository Management

9.2.1 Repositories
To configure repository settings, you can choose Settings > Repository
Management > Repository Settings on the repository details page.

The default branch is the branch selected by default when you enter the current
repository and is also the default target branch when you create a merge request
(MR). When a repository is created, the master branch is used as the default
branch and can be manually adjusted at any time.

The settings take effect only for the repository configured.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 124

Only the repository administrator and repository owner can view this page and
have the setting permission. After the setting is complete, you can click Commits
for the setting to take effect.

Table 9-1 Parameter description

Parameter Description

Do not fork a repo. This parameter is not selected by default. If this
parameter is selected, all users cannot fork the
repository.

Developers cannot
create branches.

This parameter is not selected by default. If this
parameter is selected, the developer role cannot create
branches.
NOTE

A whitelist can be set to prevent developers who are not in
the whitelist from creating branches.

Developers cannot
create tags.

This parameter is not selected by default. If this
parameter is selected, the developer role cannot create
tags.

Committers cannot
create branches

This parameter is not selected by default. If this
parameter is selected, the committer role cannot create
branches.

Pre-merge By default, this option is not selected. After this option
is selected, the server automatically generates MR pre-
merging code. Compared with running commands on
the client, this operation is more efficient and simple,
and the build result is more accurate. This option
applies to scenarios that have strict requirements on
real-time build.

Branch name rule ● The value cannot exceed 200 bytes.
● The name cannot start with -, refs/heads/, or refs/

remotes/, and cannot contain spaces or special
characters such as brackets ([), backward slashes
(\), angle brackets (<), tildes (~), circumflexes (^),
colons (:), question marks (?), asterisks (*),
exclamation marks (!), parentheses (()) , single
quotation marks ('), quotation marks ("), and
vertical bars (|). It cannot end with ./ or .lock.

● The name of a new branch cannot be the same as
that of an existing branch or tag.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 125

Parameter Description

Tag name rule ● The value cannot exceed 200 bytes.
● The name cannot start with -, refs/heads/, or refs/

remotes/, and cannot contain spaces or special
characters such as brackets ([), backward slashes
(\), angle brackets (<), tildes (~), circumflexes (^),
colons (:), question marks (?), asterisks (*),
exclamation marks (!), parentheses (()) , single
quotation marks ('), quotation marks ("), and
vertical bars (|). It cannot end with ./ or .lock.

● The name of a new tag cannot be the same as that
of an existing branch or tag.

NO TE

● Byte: a group of adjacent binary digits. It is an important data unit of computers and is
usually represented by B. 1 B = 8 bits.

● Character: a letter, digit, or another symbol that represents data and information.

Configuring MR Pre-combination
After an MR is created, you can customize the scripts for downloading plug-ins
such as WebHook and CodeArts Pipeline. That is, you can control the downloaded
code content.

● If you select MR Pre-merge, the server will generate a hidden branch,
indicating that the MR code has been merged. You can directly download the
code that already exists in the hidden branch.

● If MR Pre-merge is not selected, you need to perform pre-merge on the
client. That is, download the code of the MR source branch and MR target
branch and perform pre-merge on the build executor.

Command

The pre-merge command on the server is as follows:

git init
git remote add origin ${repo_url clone/download address}
git fetch origin +refs/merge-requests/${repo_MR_iid}/merge:refs/${repo_MR_iid}merge

If this option is not selected, you can perform the pre-merge operation on the
client and create a clean working directory on the local host. The command is as
follows:

git init
git remote add origin ${repo_url clone/download address}
git fetch origin +refs/heads/${repoTargetBranch}:refs/remotes/origin/${repoTargetBranch}
git checkout ${repoTargetBranch}
git fetch origin +refs/merge-requests/${repo_MR_iid}/head:refs/remotes/origin/${repo_MR_iid}/head
git merge refs/remotes/origin/${repo_MR_iid}/head --no-edit

Advantages

In scenarios that have high requirements on real-time build, for example, one MR
may start the build of dozens or hundreds of servers, and the pre-merging result

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 126

generated by the local or client may be inconsistent with that generated by the
server. As a result, the build code cannot be obtained accurately and the build
result is inaccurate. Pre-merging on the server can solve this problem in real time.
In addition, the script building command is simpler, and developers or CIEs can
better use it.

9.2.2 Space Freeing
To enable space freeing, you can choose Settings > Repository Management >
Space Freeing on the repository details page.

With space freeing, you can free up storage space to increase the read and write
speed for the current repository by running background clean-up tasks, including
compressing files and removing unused objects. Space freeing is similar to the
garbage collect (gc) function in Git.

Only the repository administrator and owner can view the page and have the
setting permission.

NO TE

It is recommended that you perform this operation once every month.

9.2.3 Synchronization
To configure repository settings, you can choose Settings > Repository
Management > Sync Settings on the repository details page.

This function is used to synchronize the customized settings of the current
repository to other repositories. This function supports cross-project
synchronization but does not support cross-region synchronization.

This function is used for a repository forked based on the repository because the
settings are not automatically copied during forking. For details, see Forking a
Repository

Developers or roles with higher permissions can view this page. However, only the
repository administrator and owner have the operation permission.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 127

Adding a Synchronization Repository

NO TICE

Ensure that the network connection is normal before synchronizing a repository.
● For public platforms, CodeArts Repo supports access to code repositories.
● For private repository platforms on the intranet, ensure that the network

connection between CodeArts Repo and your repository is normal.

Step 1 Click Add Repository. In the dialog box that is displayed, select the target
repository.

Step 2 Click OK. The repository synchronization is complete.

----End

NO TE

Common Failure Causes

● Failed to synchronize Commit Rules: No commit rules are set for the source repository.

● Failed to synchronize protected branches: The branch names of the source repository
and target repository are different.

9.2.4 Submodules

Background

A submodule is a Git tool used to manage shared repositories. It allows you to
embed a shared repository as a subdirectory in a repository. You can isolate and
reuse repositories, and pull latest changes from or push commits to shared
repositories.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 128

You may want to use project B (a third party repository, or a repository developed
by yourself for multiple parent projects) in project A, and use them as two
separate projects. Submodules allow you to clone a Git repository as a
subdirectory into another Git repository while keeping commits separate.

The submodules are recorded in a file named .gitmodules, which records the
information about the submodules.

[submodule "module_name"] # Submodule name
path = file_path # File path of the submodule in the current repository (parent repository).
url = repo_url # Remote repository IP address of the submodule (sub-repository).

In this case, the source code in the file_path directory is obtained from repo_url.

Using the Console
● Creating a submodule

– Entry 1:
You can add a submodule to a folder in the repository file list.

Click and select Create Submodule, as shown in the following figure.

– Entry 2
You can create a submodule on the Code tab page

Click and select Create Submodule, as shown in the
following figure.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 129

– Entry 3:

You can create a submodule in the repository settings.

Choose Settings > Repository Management > Submodules > Create
Submodule.

– Remarks:

You can use one of the preceding methods to create a submodule.

Configure the following parameters and click OK.

Table 9-2 Parameters of creating a sub-repository

Parame
ter

Description

Submod
ule

Select a repository as the submodule.

Submod
ule
Branch

Select the target branch of the submodule to be
synchronized to the parent repository.

Submod
ule Path

The storage path of the sub-repository in the parent
repository. Use slashes (/) to separate levels.

Details Remarks for creating a submodule. You can find the
operation in the file history. The value contains a maximum
of 2000 characters.

NO TE

After the creation is complete, you can find the submodule (sub-repository) in
the corresponding directory of the repository file list. The icon on the left of the
corresponding file is .

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 130

● Viewing, synchronizing, and deleting a submodule
Choose Settings > Repository Management > Submodules. On the
displayed page, repository administrators can view, synchronize, and delete
submodules.

● Synchronizing deploy keys
If a submodule is added on the Git client, the repository administrator needs
to synchronize the deploy key of the parent repository to the submodule on
the Settings > Repository Management > Submodules page. In this way,
the submodule can also be pulled during the build of the parent repository.

Using the Git Client

Step 1 Add a submodule.
git submodule add <repo> [<dir>] [-b <branch>] [<path>]

Example:

git submodule add git@***.***.com:****/WEB-INF.git

Step 2 Pulling a repository that contains a submodule
git clone <repo> [<dir>] --recursive

Example:

git clone git@***.***.com:****/WEB-INF.git --recursive

Step 3 Update a submodule based on the latest remote commit
git submodule update --remote

Step 4 Push updates to a submodule.
git push --recurse-submodules=check

Step 5 Delete a submodule.

1. Delete the entry of a submodule from the .gitsubmodule file.
2. Delete the entry of a submodule from the .git/config file.
3. Run the following command to delete the folder of the submodule.

git rm --cached {submodule_path} # Replace {submodule_path} with your submodule path.

NO TE

Omit the slash (/) at the end of the path.
For example, if your submodule is stored in the src/main/webapp/WEB-INF/
directory, run the following command:
git rm --cached src/main/webapp/WEB-INF

----End

9.2.5 Repository Backup
To configure remote backup, choose Settings > Repository Management >
Repository Backup on the repository details page.

The repository can be backed up in either of the following modes:

● Backup to Online Repository: Back up the repository to another region.
This mode imports a repository from a region to another region. For details,
see Importing an External Repository.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 131

● Backup to Local PC: Back up the repository to your local PC.
You can use the HTTPS or SSH clone mode. The clone command is generated
as shown in the following figure. You only need to paste the command to the
local Git client and run it. (Ensure the repository connectivity.)
Only the repository administrators and owners can view this tab page and
have permissions.

9.3 Policy Settings

9.3.1 Protected Branches
To configure protected branches, you can choose Settings > Policy Settings >
Protected Branches on the repository details page.

The settings take effect only for the repository configured.

Only the repository administrator and owner can view the page and have the
setting permission.

Functions of Protected Branches
● Ensure branch security and allow developers to use MRs to merge code.
● Prevent non-administrators from pushing codes.
● Prevent all forcibly push to this branch.
● Prevent anyone from deleting this branch.

NO TE

When you create a repository, the repository automatically sets the default branch
(generally master) as the protection branch to ensure repository security.
After you set a protected branch, the protected branch cannot be used as the target branch
for code merging.

Editing Protected Branches
You can set a protected branch. The procedure is as follows:
● Click Create Protected Branch. In the Added Protected Branch dialog box,

select a branch from the drop-down list or manually enter a branch name or
wildcard character, select the corresponding permissions or assign permissions
to users, and click OK.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 132

● Click to modify the configuration of the protected branch.

● Click to delete the protected branch.

● Configure the whitelist: To assign permissions to one or more members of an
unauthorized role, you can select Push and Merge under Members and click
the drop-down list to add the members to the trustlist.

NO TE

● Only developers and users with permissions higher than developers have the Can push
and Can merge permissions.

● If Administrator, Committer, and Developer are selected for Can push, all these roles
have the permissions. In this case, you do not need to select Can push or Can merge
under Members.

● You can create, edit, and delete protected branches in batches.

9.3.2 Protected Tags
To configure protected tags, you can choose Settings > Policy Settings >
Protected Tags on the repository details page.

Only the repository administrator and owner can view the page and have the
setting permission.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 133

You can set protected tags to prevent production tags or important tags from
being deleted. The procedure is as follows:

Click Create Protected Tag. In the Added Protected Tags dialog box, select a tag
from the To be protect tag drop-down list or create a wildcard, select No one,
Developers + Committer + Maintainers, or Maintainers from the Allowed to
create drop-down list, and click OK.

NO TE

● When a developer, committer and administrator, or administrator is allowed to create
protected tags, or other members cannot create or delete the tags. If no one can create
protected tags, all members cannot create or delete the tags.

● Click to delete protected tags.

9.3.3 Commit Rules
To configure commit rules, you can choose Settings > Policy Settings > Commit
Rules on the repository details page.

On the Commit Rules page, you can establish a series of code commit verification
and restriction rules to ensure code quality. The settings take effect only for the
configured repository.

Only the repository administrator and owner can view the page and have the
setting permission.

Table 9-3 Parameters on the Commit Rules page

Parameter Description

Reject unsigned
commits

Only signed commits can be pushed to the repository.
CodeArts Repo signature mode:
When performing online commit in CodeArts Repo, use the
following format to compile and submit information:
commit message # Enter the customized submission information.
 # This is a blank line.
Signed-off-by: User-defined signature # Enter the user-defined signature after
Signed-off-by:

Git client signature mode:
When running the commit command on the Git client, you
need to add the -s parameter.
git commit -s -m "<your commit message>"

You need to configure the signature and email address on
the client in advance.

Tags cannot be
deleted

After this option is selected, tags cannot be deleted on the
page or by running commands on the client.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 134

Parameter Description

Prevent
committing
secrets

Confidential files include ssh_server_rsa, id_rsa, and
id_dsa.For details, see Description of Confidential Files.

Prevent git
push -f

Indicates whether users can run the git push -f command on
the client to push code.
git push -f indicates that the current local code repository is
pushed to and overwrites the code in CodeArts Repo.
In general cases, you are not advised using this command.

Creating a Commit Rule
The repository administrator and repository owner can create a commit rule for a
branch of the repository. Only one commit rule can be set for each branch.

NO TE

Priority matching mechanism of commit rules:
1. The target branch preferentially matches the configured commit rules.
2. If no rule is exactly matched, the first rule fuzzily match is used.
3. If no rule is fuzzily matched, the default rule is used.

Table 9-4 Parameters

Parameter Description

Rule Name This parameter is mandatory. The value contains a maximum
of 200 characters.

Branch This parameter is mandatory. Select a branch from the drop-
down list or create a regular expression. This field supports a
maximum of 500 characters.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 135

https://support.huaweicloud.com/eu/codeartsrepo_faq/codeartsrepo_06_0029.html

Parameter Description

Commit rules Parameters in this area are optional.
● Commit Message: This parameter is left empty by default,

indicating that the commit message is not verified, and any
parameter can be committed. This field supports a
maximum of 500 characters.
For example, you can set the format rule of the commit
message as follows:
TraceNo:(REQ[0-9]{1,9})(.|\n|.\n)Author:.*(.|\n|.\n)Description:.*

The following is a commit message that complies with the
rule:
TraceNo:REQ1234567 Author:**** Description:testpushfile

The following is a commit message that does not comply
with the rule:
new files

● Negative Match: This parameter is left empty by default,
indicating that the commit information is not verified, and
any parameter can be committed. This field supports a
maximum of 500 characters.
For example, you can set the format rule of the commit
message as follows:
TraceNo:(REQ[0-9]{1,9})(.|\n|.\n)Author:.*(.|\n|.\n)Description:.*

● Commit author: This parameter is left empty by default,
indicating that the commit author is not verified, and any
parameter can be committed. This field supports a
maximum of 200 characters.
The commit author can run the git config -l command to
view the value of user.name and run the git config --
global user.name command to set the value of user.name.
Example:
Rules for setting the commit author: ([a-z][A-Z]{3})([0-9]{1,9})

● Commit author's email: This parameter is left empty by
default, indicating that the commit author email is not
verified, and any parameter can be committed. This field
supports a maximum of 200 characters.
The commit author can run the git config -l command to
view the value of user.email and run the git config --
global user.email command to set the email address.
Example:
Rules for setting the email of the commit author: @huawei.com$

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 136

Parameter Description

Basic
Attributes

Parameters in this area are optional.
● File Name That Cannot Be Committed: This parameter is

left empty by default, indicating that the file name is not
verified, and any file can be committed. You are advised to
use standard regular expressions to match the file name. By
default, the file path is verified based on the file name rule.
This field supports a maximum of 2000 characters.
Example:
Set File Name That Cannot Be Committed: (\.jar|\.exe)$

● Each File Size (MB): The default value is 50, indicating that
the push is rejected if the size of the added or updated file
exceeds 50 MB. The administrator can change the value
from 0 to 200.

NOTE
When a repository is created, the maximum size of a single file in the
default submission rule (default) is 200 MB. When a repository is
created, the recommended maximum size of a single file in the default
submission rule is 50 MB.

Binary Rules Parameters in this area are optional.
These parameters are not set by default, indicating that binary
files can be uploaded. The size of a single file cannot exceed
the upper limit. Allow changes to binary files, Repo File
Whitelist, and Privileged User take effect only when Do not
allow new binary files is selected. If you select Allow
changes to binary files, binary files in modifiable state are
not intercepted and can be directly uploaded. Binary files can
be deleted without binary check.
● Do not allow new binary files (privileged users

excepted)
● Allow changes to binary files (privileged users excepted)
● Binary file trustlist (files that can be directly imported to the

database. This field supports a maximum of 2000
characters.)

● Privileged User (Max. 50 privileged users.)

Effective Date Parameters in this area are optional.
Before being pushed, all commitments created after the date
specified by this parameter must match the hook settings. If
this parameter is left empty, all commitments are checked
regardless of the committing date.

NO TE

You are not advised storing binary files in CodeArts Repo. Otherwise, the performance
and stability of the code repository will be affected.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 137

Table 9-5 Examples of common regular expressions

Rule Examples

Single a, b, or c [abc]

Characters other than a, b, or c [^abc]

Lowercase letters ranging from a to z [a-z]

Characters other than the range of a to z [^a-z]

Uppercase and lowercase letters in the range of a
to z or A to Z

[a-zA-Z]

Any single character .

Either a or b a|b

Any blank character \s

Non-blank character \S

Arabic numeral character \d

Non-Arabic numeral characters \D

Letters, digits, or underscores (_) \w

Characters other than letters, digits, or underscores
(_)

\W

Match the content in parentheses (not capture) (?:...)

Match and capture the content in parentheses (...)

No or one a a?

No or more a's a*

One or more a's a+

Three a's a{3}

More than three a's a{3,}

3 to 6 a's a{3,6}

Beginning of text ^

End of text $

Word boundary \b

Non-word boundary \B

Line breaker \n

Carriage return character \r

Tab key \t

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 138

Rule Examples

Null string \0

9.3.4 Merge Requests
To configure MRs, you can choose Settings > Policy Settings > Merge Requests
on the repository details page.

Merge Requests applies to merge MRs. MRs can be merged only when all
configured MR conditions are met. You can select Score or Approval for Merge
Mechanism.

The settings take effect only for the repository configured. Only the repository
administrator and owner can view the page and have the setting permission.

Merge Mechanism
● Score: Code review is included. Based on scoring, the minimum merging score

can be set and the score ranges from 0 to 5. The code can be merged only
when the score and mandatory review meet pass conditions. When selecting
the scoring mechanism, you need to set the minimum score.

● Approval: Code review and merge approval are included. Code can be merged
only after the number of reviewers reaches gate requirements. You are
advised to configure branch policies when you select the approval
mechanism.

NO TE

By default, Approval is used. You can manually switch to Score.
After the merge mechanism is switched, the workflows of the MRs are changed. However,
the early created MRs retain the previous merge mechanism.

Merge Conditions

Table 9-6 Parameters

Parameter Description

Merge after all
reviews are resolved.

After this parameter is selected, if Must resolve is
selected as the review comment, a message Review
comment gate: failed is displayed and the Merge
button is unavailable. If it is a common review
comment, the Resolved button does not exist, the MR
is not intercepted by the merge condition.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 139

Parameter Description

Must be associated
with CodeArts Req

● Associate only one ticket number: If this
parameter is selected, one MR can be associated
with only one ticket number.

● All E2E ticket numbers pass verification: If this
parameter is selected, all associated E2E ticket
numbers must pass the verification.

● Branches to configure the MR policy: Multiple
branches can be added. You can manually enter
wildcard characters and press. Press Enter, for
example, *-stable or production/*.

MR Settings

Table 9-7 Parameters

Parameter Description

Do not merge your
own requests

After this parameter is selected, the Merge button is
unavailable when you view the MRs created by
yourself. You need to ask the person who has the
permission to merge the MRs.

A repo administrator
can forcibly merge
code

The project creator and administrator roles have the
permission to forcibly merge MRs. If the merging
conditions are not met, these roles can click Force
Merge to merge MRs.

Continue with code
review and comment
after requests are
merged

After this parameter is selected, you can continue to
review and comment on the code that has been
merged the MR.

Mark the
automatically merged
MRs as Closed (If all
commits in the B MR
are included in the A
MR, the B MR is
automatically merged
after the A MR is
merged. By default, the
B MR is marked as
merged. You can use
this parameter to mark
the B MR as closed.)

● If this parameter is not selected, MRs that are
automatically merged are marked as merged.

● If this parameter is selected, MRs that are
automatically merged are marked as closed.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 140

Parameter Description

Cannot re-open a
Closed MR.

If this option is selected, the branch merge request
cannot be set back to Open after it is closed. Re-
open in the upper right corner is hidden.

This parameter is used for process control to prevent
review history from being tampered with.

Delete source branch
by default after the
MR is merged

After the merging, the source branch is deleted.
● A protected source branch cannot be deleted.
● This setting does not take effect for historical

MRs. Therefore, you do not need to worry about
branch loss.

Do not Squash After this parameter is selected, the Squash button is
unavailable, and the entry for using this button is
unavailable in the MR.

Enable Squash merge
for new MRs

Squash merge means that when merging two
branches, Git squashes all changes on the merged
branch into one and appends them to the end of the
current branch as merge commit, which simplifies
the branch. The only difference between squash
merge and common merge lies in the commitment
history. For common merge, the merge commitment
on the current branch usually has two commitment
records, while squash merge has only one
commitment record.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 141

Merge Method

Table 9-8 Parameters

Parameter Description

Merge commit If this parameter is selected, a merge commit is
created for every merge, and merging is allowed as
long as there are no conflicts. That is, no matter
whether the baseline node is the latest node, the
baseline node can be merged if there is no conflict.
● Do not generate Merge nodes during Squash

merge: If this parameter is selected, no merge
node is generated during the squash merging.

● Use MR merger to generate Merge Commit: If
this parameter is selected, the commit information
is recorded.

● Use MR creator to generate Merge Commit: If
this parameter is selected, the commit information
is recorded.

Merge commit with
semi-linear history

If this parameter is selected, a merge commit is
recorded for each merge operation. However,
different from Merge commit, the commitment must
be performed based on the latest commit node of
the target branch. Otherwise, the system prompts the
developer to perform the rebase operation. In this
merging mode, if the MR can be correctly
constructed, the target branch can be correctly
constructed after the merge is complete.

Fast-forward If this parameter is selected, no merge commits are
created and all merges are fast-forwarded, which
means that merging is only allowed if the branch
could be fast-forwarded. When fast-forward merge is
not possible, the user is given the option to rebase.

Configure Branch Policy
Click Create to set a merge policy for a specified branch or all branches in the
repository.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 142

NO TE

Currently, branch policies can be set only for the Approval mechanism.

The following is an example of the branch policy priority:

● Assume that there are policies A and B in the repository and their branches are the
same. The system uses the latest branch policy by default.

● Assume that there are policies A and B in the repository. Branch a and branch b are
configured for policy A, and branch a is also configured for policy B. When a merge
request whose target branch is branch a is committed, the system uses policy B by
default.

If no branch policy is set in the approval mechanism, the default branch policy is used when
a merge request is committed. The branch policy can be edited and viewed but cannot be
deleted. The policy configuration is as follows:

● Branches: *. By default, all branches are used and cannot be modified.

● Reviewers Required: The default value is 0.

● Approvals Required: The default value is 0.

● Reset approval gate: This option is selected by default.

● Reset review gate: This option is selected by default.

● Add approvers/reviewers only from the following ones: This option is not selected by
default.

● Enable pipeline gate: This option is not selected by default.

● Mergers: This parameter is left blank by default.

● Approvers: This parameter is left blank by default.

● Reviewer: This parameter is left blank by default.

Table 9-9 Parameters

Parameter Description

Branches Set policies for all branches or a branch.

Reviewers Required Set Reviewers Required. When the number of
reviewer who give pass meets the Reviewers
Required, the gate is passed. 0 indicates that the
review gate is optional. However, if an MR is rejected
by a reviewer, it fails the gate.

Approvals Required Set Approvals Required. When the number of
approvals who give pass meets the Approvals
Required, the gate is passed. 0 indicates that the
approval gate is optional. However, if an MR is
rejected by an approver, it fails the gate.

Reset approval gate When code is re-pushed to the source branch of an
MR.

Reset review gate When code is re-pushed to the source branch of an
MR.

Add approvers/reviewers
only from the following
ones

If this option is selected, you can configure the list of
New Approvers and New Reviewers. If you want to
add additional members, you can only add members
from the lists.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 143

Parameter Description

Enable pipeline gate If this option is selected, before the merge, you need
to pass all pipeline gates. This rule integrates the CI
into the code development process.

Mergers The list of mandatory mergers can be configured.
When a merger request is created, the list is
automatically synchronized to the merger request.

Approvers The list of mandatory reviewers can be configured.
When a merge request is created, the list is
automatically synchronized to the merge request.

Reviewer The list of mandatory reviewers can be configured.
When a merge request is created, the list is
automatically synchronized to the merge request.

NO TE

Example of a mandatory reviewer list:
● The Reviewers Required is 2. If the list of mandatory reviewers is empty, the 2

approvers in the list of New Reviewers give pass and the gate is passed.
● The Reviewers Required is 2. If the list of mandatory reviewers is not empty, the gate

can be approved only after at least one reviewer in the list give pass.

9.4 Service Integration

9.4.1 E2E Settings
Repo uses this E2E tracing setting to log code merge reasons, such as
implementing a requirement, fixing a bug, or completing a work item. Association
is enabled by default.

Integrated Systems
It integrates with CodeArts Req and uses work items in CodeArts Req to associate
with code commits.

NO TE

The repositories of Kanban projects do not support E2E settings.

Integration Policies
(Optional) Specify available selection conditions when you associate with a work
item.

Excluded States: States of work items that CANNOT be associated with.

Associable Types: Types of work items that can be associated with.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 144

Applicable Branches: Branches to comply with preceding restrictions.

Automatic ID Rules Extraction
Automatic ID Rules Extraction (automatically extracting ticket numbers based on
code commitment information) are as follows:

● ID Prefix: (Optional) A maximum of 10 prefixes are supported, for example,
[Trouble ticket number or Requirement ticket number].

NO TE

If ID Prefix, Separator, and ID Suffix are not empty, the automatic ticket number
extraction function is enabled by default.

● Separator: (Optional) The default value is a semicolon (;).
● ID Suffix: (Optional) The default value is a newline character.

NO TE

● The values of ID Prefix, Separator, and ID Suffix cannot be the same.
● If Separator is left empty, the values of ID Prefix and ID Suffix cannot be two

semicolons (;;).
● If ID Suffix is left empty, the values of ID Prefix and Separator cannot be \n.
● The values of ID Prefix, Separator, and ID Suffix are matched in full character

mode. Regular expressions are not supported.

Examples

Step 1 Configure E2E settings.

1. Go to the target repository.
2. Choose Settings > Service Integration > E2E Settings. The E2E Settings

page is displayed.

3. Configure the following integration policies and click Submit.
Applicable Branches: Select the target branch, for example, branch.
ID Prefix: user-defined prefix, for example, Incorporated requirements.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 145

Step 2 Create a work item.

1. Click the target project name to access the project.
2. On the current Work Items tab, click Create Work Item and choose Task

from the drop-down list box. The page for creating a work item is displayed.

3. Enter a title, for example, Sprint 1.
Retain the default values for other parameters. Click Save.

Step 3 Create a File.

1. Go to the repository list page and click the name of the target repository.
2. On the Code tab, click Create and choose Create File from the drop-down list

box. The page for creating a file is displayed.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 146

3. Enter the following information, retain the default values for other
parameters, and click OK.
File name: user-defined file name, for example, Sample_Code.
File content: user-defined file content.
Commit message: Enter the prefix and work item number in the E2E settings,
for example, 708635317.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 147

Step 4 Extract the ticket number when creating a merge request.

1. Switch to the Merge Requests tab and click New.
2. Select Dev as the source branch and master as the target branch, and click

Next. The page for creating a merge request is displayed.
At this point, the work item is automatically extracted to the merge request.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 148

----End

9.4.2 Webhooks

Introduction to Webhook

Developers can configure URLs of third-party systems on the Webhook page and
subscribe to events such as branch push and tag push of CodeArts Repo based on
project requirements. When a subscription event occurs, you can use a webhook to
send a POST request to the URL of a third-party system to trigger operations
related to your system (third-party system), such as popping up a notification
window, building or updating images, or performing deployment.

If you want to email repository change notifications, you can configure
Notifications in General Settings.

Configuring Webhooks

To configure webhooks, you can choose Settings > Service Integration >
Webhooks on the repository details page.

The settings take effect only for the repository configured.

Only the repository administrator and owner can view the page and have the
setting permission.

Table 9-10 Parameters for creating a webhook

Param
eter

Description

Name Custom name.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 149

Param
eter

Description

Descri
ption

Description of the webhook.

URL (Mandatory) Provided by the third-party CI/CD system.

Token
type

Used for webhook interface authentication of third-party services. The
options are as follows:
● X-Repo-Token
● X-Gitlab-Token
● X-Auth-Token

Token Used for third-party CI/CD system authentication. The authentication
information is stored in the HTTP request header.

Event
type

The system can subscribe to the following events:
● Push events

– If Push events is selected, Regular Expression for Branch
Filtering is displayed.
NOTE

Regular Expression for Branch Filtering: The default value is .*,
indicating that all branches are matched. Max. 500 characters.
The regular expression for branch filtering must comply with regular
expressions.

– This event is triggered when code is updated in CodeArts Repo,
such as code update in LFS files or submodules, and code pushed
online or on a local Git client.

● Tag push events
This event is triggered when a tag is created or deleted.

● Merge request events
– This event is triggered when a merge request is created.
– This event is triggered when a merge request is updated. For

example, when someone updates the code content, merge
request status (closed or re-opened), merge request title or
description, merger, and work items, deletes the source branch,
and updates the squash.

– This event is triggered when a request is merged.
● Comments

– This event is triggered when a review is added. For example, add
a review for a file on the Files and Commits submenus of the
Code tab page, or on the Files Changed submenu of the Merge
Requests tab page.

– This event is triggered when a comment is added on the
Commits details page or on the Details page of Merge
Requests tab page.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 150

NO TE

● A maximum of 20 webhooks can be created for a repository.

● You can configure a token when setting up a webhook. The token will be associated
with the webhook URL and sent to you in the X-Repo-Token header.

9.5 Security Management

9.5.1 Deploy Keys
The deploy key is the public key of the SSH key generated locally. However, the
deploy keys and SSH keys of a repository cannot be the same. Deploy keys allow
you to clone repositories with read only access over SSH. They are mainly used in
scenarios such as repository deployment and continuous integration.

NO TE

● Multiple repositories can use the same deploy key, and a maximum of 10 deploy keys
can be added to a repository.

● The difference between an SSH key and repository deploy key is that the former is
associated with a user and PC and the latter is associated with a repository. The SSH key
has the read and write permissions on the repository, and the deploy key has the read-
only permission on the repository.

● The settings take effect only for the repository configured.

● Only the repository administrators and owners can view this tab page and configure
deploy keys.

To configure the deploy keys, choose Settings > Security Management > Deploy
Keys on the repository details page. The deploy key is a key that has only the
read-only permission on the repositories.

Click Add Deploy Key to create a deploy key. For details about how to generate a
local key, see Generating and Configuring an SSH Key.

9.5.2 IP Address Whitelists

About IP Address Whitelists
● An IP address whitelist includes an IP address segment and several access

control settings. The whitelist restricts users' access, upload, and download
permissions to enhance repository security.

● The IP address whitelist can be configured only for repositories whose visibility
is Private. Repositories whose visibility is Public or Public template are not
supported.

IP Address Whitelist Formats

IPv4 and IPv6 are supported. The following table lists the three formats of IP
address whitelists.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 151

Table 9-11 IP address whitelist formats

Format Description

Specified
IP
Address

This is the simplest IP address whitelist format. You can add the IP
address of your PC to the whitelist, for example, 100.*.*.123.

IP address
segment

If you have multiple servers and their IP addresses are consecutive
or the IP address of your server dynamically changes in a network
segment, you can add the IP address segment, for example,
100.*.*.0 to 100.*.*.255.

CIDR
block

● When your server on a LAN uses the CIDR, you can specify a 32-
bit egress IP address of the LAN and the number of bits for a
specified network prefix.

● Requests from the same IP address are accepted if the network
prefix is the same as the specified one.

Configuring IP Address Whitelists
IP address whitelists can be created in the following levels:

NO TE

If the Private repository for which the IP address whitelist has been configured is switched
to a Public or Public template repository, you can also upload and download code on the
CodeArts Repo page or Git client.
IP Address whitelists. The whitelists are set for all cloud services. IP addresses that are not
in the whitelist are blocked upon login. For details, see Access Control.

● IP address whitelist for repository. It allows access only from IP addresses in
the whitelist to a specific repository. To set the whitelist, choose Settings >
Security Management >IP Address Whitelist (IPv4 and IPv6 addresses are
supported. For details, see IP Address Whitelist Formats).
Allowed to access the repository: Only whitelisted IP addresses and the
repository creator can access the repository.
Allowed to download code : Only whitelisted IP addresses can download
code online and clone code locally.
Allowed to commit code: Only whitelisted IP addresses can modify and
upload code online, or commit code locally. Code-based build project
orchestration and YAML file synchronization are not affected.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 152

https://support.huaweicloud.com/eu/usermanual-iam/iam_07_0003.html

NO TE

● Commit code: Create, edit, delete, upload and rename files, create and delete
directories, submodules, branches, and tags, resolve code conflicts, create and
merge MRs, cherry-pick, revert, use LFS storage, and rebase.

● Download code: Download a single file and branches, tags, repositories and
backup repositories.

● Local download: Download code through SSH and HTTPS, and clone repository
through deploying keys.

● Local commit: Commit code through SSH and HTTPS.
● Repository synchronization is not affected by the IP address whitelist.

● Tenant-level IP address whitelist: To set IP address whitelists for repositories
of all accounts from a tenant, log in to the CodeArts Repo repository list page,
click the alias in the upper right corner, and choose All Account Settings >
Repo > Whitelists for All Accounts, as shown in the following figure. The
configuration rules are the same as those of repository-level IP address
whitelists.

Only tenant accounts have permissions to configure Whitelist for All

Accounts. Click next to Add Address and select Prioritize this List. For
details about the logic of cloning the Git client or downloading the repository
source code on the UI, see the following table.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 153

Acco
unt-
level
Whi
telis
t
Prior
itize
d
(Prio
ritiz
e
This
List)

Configur
e
Tenant-
level
Whitelis
t

Configur
e
Reposit
ory-
Level
Whitelis
t

Priority

Enab
led

× × All IP addresses are allowed.

× √ The repository-level whitelist prevails.

√ × The tenant-level whitelist prevails.

√ √ The intersection of the tenant-level whitelist
and repository-level whitelist prevails.

Disa
bled

× × All IP addresses are allowed.

× √ The repository-level whitelist prevails.

√ × The tenant-level whitelist prevails.

√ √ The repository-level whitelist prevails.

9.5.3 Risky Operations
To configure risky operations, choose Settings > Security Management > Risky
Operations on the repository details page.

Only the repository administrators and owners can view this tab page and
configure risky operations.

Risky operations are as follows:

● Transfer repository ownership: The ownership of a repository can be
transferred to another person in the repository but cannot be transferred to a
viewer or custom role.

● Delete repository: The repository cannot be recovered after being deleted.
● Rename repository: After renaming a repository, check the configuration

related to the repository name in a timely manner.

9.5.4 Watermarks
On the repository details page, choose Settings > Security Management >
Watermark. The watermark content consists of your account name and current
time.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 154

Only repository administrators and owners can view this tab page and configure
the watermark function.

Watermarks will be displayed on code repository pages to reduce the risk of code
asset leakage.

9.5.5 Repository Locking
When a new software version is ready for release, administrators can lock the
repository to protect it from being compromised. After the repository is locked, no
one (including the administrators) can commit code to any of its branches.

To lock a repository, choose Settings > Security Management > Repository
Locking on the repository details page.

Only the repository administrator and owner can view the page and have the
setting permission.

After the administrator locks the repository, no one can use the repository
functions in Table 9-12.

Table 9-12 List of functions that cannot be executed

Tab Page Function

Code If the repository is locked, the following functions cannot be
performed on the Code tab page:
● Create, edit, delete, rename, and upload a file
● Create and delete a directory
● Create and delete a submodule
● Cherry-Pick and revert a file
● Add, delete, edit, reply, and resolve a review and comment

Branch &
Tag

If the repository is locked, the following functions cannot be
performed on the Branch or Tag subtab of the Code tab page:
● Create, edit, and delete a branch, merge branches, and sett

protected branches.
● Create and delete a Tag

Merge
Requests

If the repository is locked, the following functions cannot be
performed on the Merge Requests details page:
● Create, edit, close, re-open, and merge a merge request
● Cherry-Pick and revert a merge request
● Resolve a code conflict
● Add, delete, edit, reply, and resolve a review comment

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 155

Tab Page Function

Repository &
Members

If the repository is locked, the following functions cannot be
performed:
● Fork a repository
● Add, delete, edit, and approve a member

Settings If the repository is locked, the following functions cannot be
performed on the Settings tab page:
● Repository settings
● Submodules
● Deploy key synchronization
● Space freeing
● Policy settings (All)
● Service integration (All)

NO TE

After the repository is locked, changes to project members will be synchronized to the
repository, affecting repository members.

9.5.6 Audit Logs
To view audit logs, choose Settings > Security Management > Audit Logs on the
repository details page.

Only the repository administrators and owners can view this tab page.

Audit logs record only changes to repository attributes. Check daily development
activities such as MRs, reviews, and member changes from repository dynamics.

You can filter logs by time segment, operator, operation type, or log information.
The operation types include repository information, submission rule, merge
request, and merge request policy.

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 156

10 Submitting Code to the CodeArts
Repo

10.1 Creating a Commit

10.2 Transmitting and Storing a File in Encryption Mode

10.3 Viewing Commit History

10.4 Pushing Code to CodeArts Repo Using Eclipse

10.1 Creating a Commit

Background

In code development, developers usually clone code from CodeArts Repo to the
local PC to develop code locally, and the commit the code to CodeArts Repo after
completing the phased development task. This section describes how to use the
Git client to commit the modified code.

Prerequisites
1. Git Installation and Configuration.
2. You have created a repository in CodeArts Repo. For details, see Overview.
3. You have set the SSH keys or HTTPS password. For details, see Setting SSH

Key or HTTPS Password for CodeArts Repo Repository
4. You have Cloned the CodeArts Repo Repository to the Local Host. For details,

see Overview.

Procedure

Generally, developers do not directly develop code in the master branch. Instead,
they create a feature branch based on the master or develop branch, and develop
code in it. Then they commit the feature branch to CodeArts Repo, and merge it
into the master or develop branch. The preceding operations are simulated as
follows:

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 157

Step 1 Go to the local repository directory and open the Git client. Take Git Bash as an
example. The principles and commands of other Git management tools are the
same.

Step 2 Create a feature1001 branch based on the master branch, switch to the created
branch, and run the following command in the master branch:
git checkout -b feature1001 #Shown in 1 in the following figure.

This command creates a branch and then switches to the branch.

If the command is successfully executed, 2 in the following figure is shown. You
can run the ls command to view the files of the branch (as shown in 3 in the
following figure), which are the same as those of the master branch currently.

Step 3 Modify code in the feature branch (code development).

Git supports Linux commands. In this case, the touch command is used to create a
file named newFeature1001.html, indicating that the developer has developed
new features locally and a new file is added into the local code repository.

touch newFeature1001.html

Run the ls command again to view the created file.

Step 4 Run the add and commit commands to add the file from the working directory to
the staging area, and then commit the file to the local repository. (For details, see
1 Overview.)

You can also run the status command to check the file status.

1. Run the status command. The command output shows that a file in the
working directory is not included in version management, as shown in 1 in
the following figure.

2. Run the add command to add the file to the staging area, as shown in 2 in
the following figure.
git add . # Period (.) means all files, including hidden files. You can also specify a file.

3. Run the status command. The command output shows that the file has been
added to the staging area and is waiting to be committed, as shown in 3 in
the following figure.

4. Run the commit command to commit the file to the local repository, as
shown in 4 in the following figure.
git commit -m "<your_commit_message>"

5. Check the file status again. If no file to be committed exists, the commit is
successful, as shown in 5 in the following figure.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 158

Step 5 Push a local branch to CodeArts Repo.
git push --set-upstream origin feature1001

Run the preceding command to create a branch that is the same as your local
feature1001 branch in CodeArts Repo, and associate them and synchronize the
branch.

origin indicates the alias of your CodeArts Repo. The default alias of a directly
controllable repository is origin. You can also use the repository address.

NO TE

If the push fails, check the connectivity.

● Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@********.com

If the command output contains connect to host ********.com port 22: Connection
timed out, your network is restricted from accessing CodeArts Repo. Contact your
network administrator.

● Check the SSH key. If necessary, regenerate a key and configure it on the CodeArts Repo
console. For details, see 3.2 SSH Keys. Alternatively, check whether the HTTPS
password is correctly configured.

● Check the IP address whitelist. If no whitelist is configured, all IP addresses are allowed
to access the repository. If a whitelist is configured, only IP addresses in the whitelist are
allowed to access the repository.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 159

Step 6 View the CodeArts Repo repository branch.

Log in to CodeArts Repo and go to your repository. In the Files tab page, you can
switch to your branch in CodeArts Repo.

NO TE

If the branch you just committed is not displayed, your origin may be bound to another
repository. Use the repository address to commit the branch again.

Step 7 Create a merge request. For details, see 8.5.1 Managing MRs. Notify the approver
to review the request and merge the new feature into the master or develop
branch.

----End

10.2 Transmitting and Storing a File in Encryption
Mode

CodeArts Repo uses git-crypt for encrypted storage and transmission of
confidential and sensitive files.

About git-crypt
git-crypt is a third-party open-source software that can transparently encrypt and
decrypt files in the Git repository. It can encrypt and store specified files and file
types. Developers can store encrypted files (such as confidential information or
sensitive data) and shared code in the same repository and pull and push them
like in a common repository. Only the person who has the corresponding file key
can view the content of the encrypted files, but others are not restricted to read
and write unencrypted files.

git-crypt allows you to encrypt only specific files without locking the entire
repository, facilitating team cooperation and ensuring information security.

Using Key Pairs for Encryption and Decryption on Windows

Step 1 Install and initialize Git.

Step 2 Download the latest Windows-based git-crypt and save the downloaded .exe file
to the cmd folder in the Git installation directory. The following figure uses the
default Git Bash installation path of Windows Server 2012 R2 Standard (64-bit)
as an example.

Put the .exe file in the folder. You do not need to run it.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 160

https://github.com/oholovko/git-crypt-windows/releases

Step 3 Generate a key pair.

1. Open Git Bash and go to the local repository, as shown in 1 in the following
figure.

2. Run the following command to generate a key pair, as shown in 2 in the
following figure.
git-crypt init

3. Export the key file. In this example, the key file is exported to the C:\test
directory and named KeyFile. Run the following command, as shown in 3 in
the following figure.
git-crypt export-key /c/test/keyfile

4. Check whether the key is generated in the file path where the key is exported.
In this example, check whether the KeyFile file exists in the C:\test directory,
as shown in the following figure.

The computer containing the key file can decrypt the corresponding encrypted
file.

Step 4 Configure the encryption scope for the repository.

1. Create a file named .gitattributes in the root directory of the repository.
2. Open the .gitattributes file and run the following command to set the

encryption range.
<file_name_or_file_range>: filter=git-crypt diff=git-crypt

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 161

Four examples are as follows:
FT/file01.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.
*.java filter=git-crypt diff=git-crypt # The .java file is encrypted.
G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.
ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.

NO TE

● If the system prompts you to enter the file name when you create the .gitattributes
file, you can enter .gitattributes. to create the file. If you run the Linux command to
create the file, this problem does not occur.

● Do not save the .gitattributes file as a .txt file. Otherwise, the configuration does not
take effect.

Step 5 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

You can run the add, commit, and push commands to push the repository to
CodeArts Repo. In this case, the encrypted files are pushed together.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 162

Encrypted files are stored in CodeArts Repo as encrypted binary files and cannot
be viewed directly. If you do not have a key, you cannot decrypt it even if you
download it to the local computer.

NO TE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.

In team cooperation, -f (forcible execution) has certain risks and may cause the members'
work output to remain unchanged. Exercise caution when using -f.

Step 6 Decrypt the file.

1. Ensure that the git-crypt file exists in the Git installation path on the local
computer.

2. Clone the repository from CodeArts Repo to the local host.
3. Obtain the key file for encrypting the repository and store it on the local

computer.

4. Go to the repository directory and right-click Git Bash.
5. Run the decryption command. If no command output is displayed, the

command is successfully executed.
git-crypt unlock /C/test/KeyFile # Replace /C/test/KeyFile with the actual key storage path.

----End

Encrypting and Decrypting a File in GPG Mode on Windows

Step 1 Install and initialize Git.

Step 2 Download the latest Windows-based git-crypt and save the downloaded .exe file
to the cmd folder in the Git installation directory. The following figure uses the
default Git Bash installation path of Windows Server 2012 R2 Standard (64-bit)
as an example.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 163

https://github.com/oholovko/git-crypt-windows/releases

Put the .exe file in the folder. You do not need to run it.

Step 3 Download the GPG of the latest version. When you are prompted to donate the
open-source software, select 0 to skip the donation process.

Double-click to start the installation. Click Next to complete the installation.

Step 4 Generate a key pair in GPG mode.

1. Open Git Bash and run the following command:
gpg --gen-key

2. Enter the name and email address as prompted.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 164

https://www.gnupg.org/download/

3. Enter o as prompted and press Enter. The dialog boxes for entering and
confirming the password are displayed.

The password can be empty. To ensure information security, you are advised
to enter a password that complies with the standard (this password is
required for decryption).

4. If the following information is displayed, the GPG key pair is generated
successfully.

Step 5 Initialize the repository encryption.

1. Open Git bash in the root directory of the repository and run the following
command to initialize the repository:
git-crypt init

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 165

2. Run the following command to add a copy of the key to your repository. The
copy has been encrypted using your public GPG key.
git-crypt add-gpg-user USER_ID

USER_ID can be the name, email address, or fingerprint that uniquely
identifies the key, as shown in 1, 2, and 3 in the following figure in sequence.

After the command is executed, a message is displayed, indicating that
the .git-crypt folder and two files in it are created.

Step 6 Configure the encryption scope for the repository.

1. Go to the .git-crypt folder in the repository.
2. Open the .gitattributes file and run the following command to set the

encryption range.
<file_name_or_file_range>: filter=git-crypt diff=git-crypt

Four examples are as follows:
FT/file01.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.
*.java filter=git-crypt diff=git-crypt # The .java file is encrypted.
G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.
ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 166

3. Copy the .gitattributes file to the root directory of the repository.

Step 7 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

You can run the add, commit, and push commands to push the repository to
CodeArts Repo. In this case, the encrypted files are pushed together.

Encrypted files are stored in CodeArts Repo as encrypted binary files and cannot
be viewed directly. If you do not have a key, you cannot decrypt it even if you
download it to the local computer.

NO TE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.
In team cooperation, -f (forcible execution) has certain risks and may cause the members'
work output to remain unchanged. Exercise caution when using -f.

Step 8 Export the key.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 167

1. Lists the currently visible keys. You can view the name, email address, and
fingerprint of each key.
gpg --list-keys

2. Run the gpg --export-secret-key command to export the keys. In this
example, the gpgTest key is exported to drive C and named Key.
gpg --export-secret-key -a gpgTest > /c/key # -a indicates that the key is displayed in text format.

During the execution, the system prompts you to enter the key password.
Enter the correct password.
No command output is displayed. You can view the key file in the
corresponding directory (drive C in this example).

3. Send the generated key to the team members to share the encrypted file.

Step 9 Import the key and decrypt the file.

1. To decrypt files on another computer, you need to download and install git-
crypt and GPG based on Git. For details, see the previous steps in this section.

2. Clone the corresponding repository to the local host.
3. Obtain the key of the corresponding encrypted file. For details about how to

export the key, see the previous step. In this example, the obtained key is
stored in drive C.

4. Go to the repository, open Git Bash, and run the import command to import
the key.
gpg --import /c/key
/c/Key is the key path and user-defined key name in this example. Replace them with the actual
ones.

During the import, the system prompts you to enter the password of the key.
If the import is successful, the following figure is displayed.

5. Run the unlock command to decrypt the file.
git-crypt unlock

During the decryption, a dialog box is displayed, prompting you to enter the
password of the key. If no command output is displayed after you enter the
correct password, the decryption is successful.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 168

Step 10 View the file before and after decryption.

----End

Application of git-crypt Encryption in Teamwork
In most cases, a team needs to store files that have restricted disclosure in the
code repository. It can use CodeArts Repo, Git, and git-crypt to encrypt some files
in the distributed open-source repository.

Generally, Key pair encryption can meet the requirements of restricting the
access to some files.

When a team needs to set different confidential levels for encrypted files, the GPG
encryption can be used. This encryption mode allows you to use different keys to
encrypt different files in the same repository and share the keys of different
confidential levels with team members, restricting file access by level.

Installing git-crypt and gpg on Linux and macOS
Installing git-crypt and gpg on Linux

● Linux installation environment

Software Debian/Ubuntu
Package

RHEL/CentOS Package

Make make make

A C++11 compiler (e.g.
gcc 4.9+)

g++ gcc-c++

OpenSSL development
files

libssl-dev openssl-devel

● In Linux, install git-crypt by compiling the source code.

make
make install

Install git-crypt to a specified directory
make install PREFIX=/usr/local

● In Linux, install GPG by compiling the source code.
./configure
make
make install

● Install git-crypt using the Debian package.
The Debian package can be found in the debian branch of the project Git
repository.
The software package is built using git-buildpackage, as shown in the
following figure.
git checkout debian
git-buildpackage -uc -us

● Install GPG using the build package in Debian.
sudo apt-get install gnupg

Install git-crypt and GPG on macOS.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 169

● Install git-crypt on macOS.
Run the following command to install git-crypt using the brew package
manager.
brew install git-crypt

● Install GPG on macOS.
Run the following command to install git-crypt using the brew package
manager.
brew install gpg

10.3 Viewing Commit History
CodeArts Repo allows you to view details about the commit history and related
file changes.

You can view the commit history on the History tab page of the Files or
repository dynamics. You can click a commit record to view the committer,
commit number, parent node, number of comments, and code change
comparisons.

You can comment on a commit or reply a comment.

You can click the icon in the following figure to switch the horizontal or vertical
display of code change comparison. You can click Show All to view the full text of
the files involved in the commit.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 170

10.4 Pushing Code to CodeArts Repo Using Eclipse

Background
You can install EGit on Eclipse so that Eclipse can be connected with CodeArts
Repo and be used for operations such as committing code from a local Git
repository to a remote one.

NO TE

Only Eclipse 4.4 or later versions are supported.
● For the first push:

1. Create a repository on the local computer, that is, the local repository.
2. Commit the update to the local repository.
3. Pull the code from the server to the local repository, merge the code, and push the

repository to the server.
● If it is not the first push:

1. Commit the modified code to the local repository.
2. Pull the code from the server to the local repository, merge the code, and push the

repository to the server.

Step 1: Installing EGit on Eclipse
Eclipse 4.4 is used in the following procedure.

1. On the Eclipse toolbar, choose Help > Install New Software....

2. In the Install window displayed, click Add....
Set Location to https://download.eclipse.org/egit/updates.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 171

https://download.eclipse.org/egit/updates

3. Click OK. Then, click Next until the installation is finished.
Restart Eclipse after the installation.

Step 2: Configuring EGit on Eclipse
1. On the Eclipse toolbar, choose Window > Preferences > Team > Git >

Configuration.
Set Key to a registered username.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 172

2. Click OK.
email indicates the bound email address. If the username is not set
previously, set it in this step.

Step 3: Creating a Project and Committing Code to the Local Git Repository
1. Create the git_demo project and the HelloWorld.java class.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 173

2. Share the git_demo project with the local repository.

3. In the Share Project window displayed, select Git.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 174

4. Click Next. The Configure Git Repository dialog box is displayed.

5. Click Create Repository to create a Git repository.
The directory is in the untracked status, indicated by a question mark (?).
Choose Team > Commit... to commit code to the local repository.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 175

6. In the Commit Changes dialog box displayed, set the commit message.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 176

7. Click Commit to commit the code to the local repository.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 177

Step 4: Committing Code in the Local Repository to the Remote Git
Repository

1. Create a repositor in CodeArts Repo. For details, see Overview.
Go to the repository details page and copy the repository URL.

2. Choose Team > Remote > Push... to push the code to the remote repository.

3. In the Push to Another Repository dialog box, set the parameters.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 178

4. Click Next. The Push Ref Specifications dialog box is displayed.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 179

5. Click Add Spec.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 180

6. Click Next. The Push Confirmation dialog box is displayed.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 181

7. Click Finish.

8. Click OK.
Log in to the remote repository and check the submitted code.

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 182

11 More About Git

11.1 Using the Git Client

11.2 Setting Password-Free Access via HTTPS

11.3 Using the TortoiseGit Client

11.4 Use Cases on the Git Client

11.5 Common Git Commands

11.6 Using Git LFS

11.7 Git Workflows

11.1 Using the Git Client

Background
Before using the Git client, you need to understand the workflow and master basic
operations, such as installing Git, creating and cloning repositories, adding,
committing, and pushing changes, creating, updating, and merging branches,
creating tags, and replacing local changes.

Prerequisites
The Git client has been installed.

Usage Process
The following figure shows the basic process of using the Git client.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 183

Table 11-1 Procedure

Procedure Description

Install the
Git client

Install the Git client for your operating system.
● Git for Windows
● Git for macOS X
● Git for Linux

Create a
repository

Create and open a new folder, and run the following command:
git init

A Git repository is created.

Clone a
repository

Run the following command to create a clone of a local
repository:
git clone /path/to/repository

If the repository is on a remote server, run the following
command:
git clone username@host:/path/to/repository

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 184

Procedure Description

Local
repository
structure

There are three components in a local repository: working
directory, index, and HEAD.
● Working directory contains the files that you are working on.
● Index caches changes you have made.
● HEAD points to the latest commit.

Add and
commit
changes

Run the following command to add the changes to the index:
git add <filename>
git add *

Run the following command to commit the changes:
git commit -m "Code submission information"

The changes are committed to the HEAD but not to the remote
repository.

Push
changes

The changes are in the HEAD of the local repository. Run the
following command to push the changes to the remote
repository:
git push origin master

You can replace master with any other branch to be pushed.
If you have not cloned an existing repository, run the following
command to connect the local repository to a remote server
before the push:
git remote add origin <server>

Then push the changes to the added server.

Create a
branch

Branches enable you to develop features separately. When a
repository is created, the master branch is the main branch by
default. Develop features on other branches and then merge
them to the main branch after the development.
1. Create a branch named feature_x and check out the branch.

git checkout -b feature_x

2. Check out the main branch.
git checkout master

3. Push the main branch to the remote repository. (If the branch
is not pushed, the branch can be seen only in your local
repository.)
git push origin <branch>

4. Delete the created branch.
git branch -d feature_x

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 185

Procedure Description

Update and
merge
branches

1. Run the following command to update the local repository to
the latest remote commits:
git pull
The remote changes are fetched and merged to your working
directory.

2. Run the following command to merge other branches to the
current branch (for example, the master branch):
git merge <branch>

NOTE
Automatic merges may fail and conflicts occur. In this case, you need
to modify these files to manually merge the conflicts.

3. After the modification, run the following command to add
your changes.
git add <filename>

4. Before the modification, you can run the following command
to compare the source and target branches.
git diff <source_branch> <target_branch>

Create a tag You are advised to create tags for releases. For example, run the
following command to create a tag named 1.0.0:
git tag 1.0.0 1b2e1d63ff

1b2e1d63ff is the first 10 characters of the commit ID to be
tagged. Run the following command to obtain the commit ID:
git log

You can enter the first several characters of the commit ID as
long as it can distinguish the commit from others.

Replace local
changes

Run the following command to replace the unwanted local
changes:
git checkout -- <filename>

The files in the working directory are replaced by the latest
content in the HEAD. Changes added to the index and new files
are not affected.
To discard all local changes and commits, fetch the latest
commit from the server and reset the local main branch to the
commit.
git fetch origin
git reset --hard origin/master

11.2 Setting Password-Free Access via HTTPS

Background

The username and password are required each time you connect to CodeArts Repo
using the HTTPS protocol. However, Git can help you implement password-free
access with its credential storage. You are advised to install Git 2.5 or a later
version so that the function runs properly. The following describes the
configuration methods on different OSs:

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 186

● Setting Password-Free Access on Windows
● Setting Password-Free Access on macOS
● Setting Password-Free Access on Linux

Prerequisites
● The SSH keys and HTTPS password have been set.
● You have to enter the username and password in CodeArts Repo each time

you use the HTTPS protocol to perform operations such as git clone, git fetch,
git pull, and git push.

Setting Password-Free Access on Windows
The following table describes how to set password-free access on Windows.

Table 11-2 Setting password-free access on Windows

Method Description

Set the HTTPS
password on
the local
computer

1. Set the Git authentication mode.
Open the Git client and run git config --global
credential.helper store.

2. Run the Git command to clone or push code for the first
time, and enter the username and password as prompted.

3. Open the .git-credentials file. If the username and
password have been stored locally, the following
information is displayed:
https://username:password@***.***.***.com

Setting Password-Free Access on macOS
Install the osxkeychain tool to implement password-free access.

1. Check whether the tool has been installed.
git credential -osxkeychain
Test for the cred helper
Usage: git credential -osxkeychain < get|store|erase >

If the following information is displayed, the tool has not been installed.
git: 'credential -osxkeychain' is not a git command. See 'git --help'.

2. Obtain the installation package.
git credential -osxkeychain
Test for the cred helper
git: 'credential -osxkeychain' is not a git command. See 'git --help'.
curl -s -o \
https://github-media-downloads.s3.amazonaws.com/osx/git-credential-osxkeychain
Download the helper
chmod u+x git-credential-osxkeychain
Fix the permissions on the file so it can be run

3. Install osxkeychain in the directory where Git is installed.
sudo mv git-credential-osxkeychain\
"$(dirname $(which git))/git-credential-osxkeychain"
Move the helper to the path where git is installed
Password:[enter your password]

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 187

4. Use osxkeychain to set Git to the password-free mode.
git config --global credential.helper osxkeychain
#Set git to use the osxkeychain credential helper

NO TE

The password needs to be entered the first time you perform Git operations. After
that, osxkeychain will manage the username and password, and you do not need to
enter password subsequently.

Setting Password-Free Access on Linux

Linux provides two password-free access modes:

● cache:

– Credentials are cached in memory and cleared after 15 minutes.
git config --global credential.helper cache
#Set git to use the credential memory cache

– Set the expiration time in timeout, in units of seconds.
git config --global credential.helper 'cache --timeout=3600'
Set the cache to timeout after 1 hour (setting is in seconds)

● store:

Credentials are stored in a plain-text file (~/.git-credentials by default) in the
home directory on the disk. The credentials never expire unless you change
the password on the Git server. The content of the git-credentials file is as
follows:

https://username:password@***********.com

After saving the credentials in the preceding file, run the following command
to implement pass-free access:
git config --global credential.helper store

Troubleshooting

If the message SSL certificate problem: self signed certificate is displayed when
you download code using HTTPS, run the following command on the client:

git config --global http.sslVerify false

11.3 Using the TortoiseGit Client

Generating a PPK File

A PPK file is required for downloading and committing code on the TortoiseGit
client. Assuming that an SSH key pair has been generated on the Git client. The
methods to generate a PPK file are different in the following two scenarios:

● The Public Key Has Been Added to Ssh-key in CodeArts Repo

a. On theStart menu, search for and select PuttyGen.

b. Click Load.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 188

c. Select the id_rsa file in the directory where the SSH key pair is stored and
click Open.

d. Click OK and select Save private key.

e. Click Yes to generate a PPK file.
f. Save the file to the directory where the SSH key pair is stored.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 189

● The Public Key Has Not Been Added to CodeArts Repo

a. On theStart menu, search for and select PuttyGen.

b. Click Generate to generate a key, as shown in the following figure.

c. Click Save private key to save the generated key as a PPK file.

d. Click Yes to generate a PPK file.

e. Save the file to the directory where the SSH key pair is stored.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 190

Creating a Git Version Repository
To create a repository for the first time, right-click in an empty directory on the
local computer and choose Git Create repository here….

Cloning a Version Repository
1. Open the local Git repository directory (where the repository is created) and

choose TortoiseGit > Pull on the right-click menu.
2. Click Manage Remotes.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 191

3. Specify the URL, select the PPK file for the Putty field, and click OK.

Push Version Repository
1. Configure the username, email address, and signature key ID (PPK file).
2. Right-click in the blank area and choose TortoiseGit > setting.
3. Select Git, and set Name and Email.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 192

NO TE

If the push fails, run the following script to locate the fault and send the git.log file
generated to the technical support:
#!/bin/bash
this script will collect some logs for Coding.net
how to use ###
first enter your git reposiztory
then execute this bash, please make sure you have correct rights
echo "## git version ##################" >> git.log
git version >> git.log
echo "## ping ##########################" >> git.log
ping code*************.com >> git.log
echo "## curl *************.com ###########" >> git.log
curl -v https://code*************.com >> git.log 2>&1
echo "## ssh -vT git@*************.com ##############" >> git.log
ssh -vT git@*************.com >> git.log 2>&1
echo "## git pull ##############" >> git.log
GIT_CURL_VERBOSE=1 GIT_TRACE=1 GIT_TRACE_PACKET=1 git pull >> git.log 2>&1

11.4 Use Cases on the Git Client

11.4.1 Uploading and Downloading Code
1. Ensure that the network connection is up and running.

Enter telnet *************.com 22 on the client.
If command not found is displayed, the network cannot access CodeArts
Repo.

2. Check if the client is trusted by CodeArts Repo.
If the system prompts you to enter a password when you pull or push code,
check whether the public key has been added to CodeArts Repo.
If the public key has been added, run $ ssh -vT git@*************.com to check
whether the trust relationship is established.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 193

If the following information is displayed, the trust relationship is established.

3. If the fingerprints of both parties are changed after the trust relationship is
established, a public key authentication error is reported during commit
attempts. In this case, perform the following operations:

a. Delete the lines related to *************.com from the ~/.ssh/known_hosts
file.

b. Enter push, pull, or ssh -T git@*************.com.
c. Enter yes when asked whether to trust the public key of the server.

4. The code download is successful. If the target branch of the push is protected,
the code fails to be pushed.

5. Contact the repository administrator to unprotect the branch. The code can
be pushed after the protection is canceled.

11.4.2 Committing Letter Case Changes in File Names to the
Server

Background
When changes are made to the case of a file name and pushed to the server, the
server does not recognize the changes.

For example, a file named AppTest.java is renamed as apptest.java on the Git
client. When the change is pushed to the server, the name of the file in the remote
server is still AppTest.java.

Procedure
Run the following commands in sequence:

git mv --force AppTest.java apptest.java
git add apptest.java
git commit –m "rename"
git push origin XXX (branch name)

11.4.3 Setting the Line Ending Conversion

Background
Different operating systems may use different line endings. Therefore, if you open
a file created in an operating system different from yours, the file may be
displayed incorrectly. This problem may also occur when you use version control
systems.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 194

Procedure
1. (Optional) By default, core.autocrlf is set to false in Git. Perform the

following operations to enable Git to identify and convert the line endings for
text files:

– On Windows

Set core.autocrlf to true. All text files in the local repository use LF line
endings whereas those checked out to the working directory use CRLF
line endings.

– On Linux

Set core.autocrlf to input. When files are imported to the local
repository, Git auto-converts line endings from CRLF to LF. No conversion
is performed when files are checked out from the local repository to the
working directory.

2. Set core.autocrlf to true to enable auto-conversion of line endings.
git config --global core.autocrlf true

11.4.4 Committing Hidden Files
Run git add.

NO TE

● Do not use git add *, which instructs Git to ignore the hidden files.

● The file and directory names cannot contain special characters.

11.4.5 Pushing a File That Has Been Changed on the Server

Background

A file push on the Git client will fail if the file is modified on the server, and the
following information is displayed.

Procedure
1. Pull the latest code from the server.

git pull origin XXX (branch name)

2. Modify and push the code.
git push origin XXX (branch name)

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 195

11.5 Common Git Commands

Background
● Git is a free and open-source distributed version control system. It can

manage projects of any size in an agile and efficient manner.
● With Git, you can clone a complete Git repository (including code and version

information) from a server to a local computer, create branches, modify and
commit code, and merge branches.

Commonly Used Commands
The following table describes the functions, formats, parameters, and examples of
common Git commands.

Table 11-3 Common Git commands

Comm
and

Funct
ion

Format Par
ame
ter

Example

ssh–
keygen
–t rsa

Gener
ate a
key

ssh–keygen –
t rsa –C
[email]

ema
il:
indi
cate
s an
ema
il
addr
ess.

Obtain the key file id_rsa.pub from
the .ssh folder in drive C.
ssh–keygen –t rsa –C
"devcloud_key01@XXX.com"

git
branch

Creat
e a
branc
h

git branch
[new
branchname]

new
bra
nch
na
me:
indi
cate
s
the
nam
e of
the
new
bran
ch.

Create a branch:
git branch newbranch

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 196

Comm
and

Funct
ion

Format Par
ame
ter

Example

git
branch
–D

Delet
e a
branc
h

git branch –D
[new
branchname]

new
bra
nch
na
me:
indi
cate
s
the
nam
e of
the
new
bran
ch.

Delete a local branch:
git branch –D newbranch
Delete a branch in the remote
repository:
git branch –rd origin/newbranch
Remove branches that have been
deleted in the remote repository:
git remote prune origin

git add Add a
file to
the
index

git add
[filename]

file
na
me:
indi
cate
s
the
nam
e of
the
file
to
be
add
ed.

Add a file to the index:
git add filename
Add all modified and new files to the
index:
git add .

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 197

Comm
and

Funct
ion

Format Par
ame
ter

Example

git rm Delet
e a
local
direct
ory or
file

git rm
[filename]

file
na
me:
indi
cate
s
the
nam
e of
the
file
or
dire
ctor
y to
be
dele
ted.

Delete a file or a directory:
git rm filename

git
clone

Clone
a
remot
e
reposi
tory

git clone
[VersionAddr
ess]

Vers
ion
Add
ress:
indi
cate
s
the
URL
of
the
rem
ote
repo
sitor
y.

Clone a jQuery repository
git clone https://github.com/jquery/
jquery.git
A directory is generated on the local
computer. The name of the directory
is the same as that of the cloned
repository.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 198

Comm
and

Funct
ion

Format Par
ame
ter

Example

git pull Pull
the
branc
h in
the
remot
e
reposi
tory
to the
local
comp
uter
and
merg
e it
with a
specifi
ed
local
branc
h

git pull
[RemoteHost
name]
[RemoteBran
chname]:
[LocalBranch
name]

- Pull the next branch from the remote
repository and merge it with the local
master branch.
git pull origin next:master

git diff Comp
ares
files,
branc
hes,
direct
ories,
or
versio
ns

git diff - Compare the current branch with the
master branch:
git diff master

git
commit

Com
mit
files

git commit - Add a commit message:
git commit –m "commit message"

git
push

Push
files
to the
remot
e
reposi
tory

git push
[RemoteHost
name]
[LocalBranch
name]
[RemoteBran
chname]

- If the remote branch name is not
specified, the local branch is pushed to
the remote branch that it tracked (The
two branches usually share a name).
Such a remote branch will be created
if it does not exist.
git push origin master
The local master branch is pushed to
the master branch in the remote
repository. If the latter does not exist,
it will be created.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 199

Comm
and

Funct
ion

Format Par
ame
ter

Example

git
merge

Merg
e
branc
hes

git merge
[branch]

bra
nch:
indi
cate
s
the
nam
e of
the
sour
ce
bran
ch

Assuming that the current branch is
the develop branch. The latest commit
to the master branch is merged to the
develop branch.
git merge master

git
checko
ut

Check
out a
branc
h

git checkout
[branchname
]

bran
chn
ame
:
indi
cate
s
the
nam
e of
the
bran
ch
to
be
swit
che
d to.

Check out the master branch:
git checkout master

git log List
the
log

git log - List all logs:
git log –-all

git
status

Check
the
status

git status - git status

git grep Searc
h for
a
chara
cter
string

git grep - Check whether there is any character
string containing hello:
git grep "hello"

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 200

Comm
and

Funct
ion

Format Par
ame
ter

Example

git
show

Displa
y
object
s or
revisi
ons

git show - ● git show v1
The revisions attached with the v1
tag are displayed.

● git show HEAD
Display the last commit of the
current branch.

● git show HEAD^
Display the first parent of the last
commit of the current branch.

● git show HEAD~4
Display the ancestor four
generations prior to the last
commit of the current branch.

git
stash

Com
mand
s
relate
d to
stash
es

git stash - ● git stash
Saves and restores the work
progress.

● git stash list
Lists all stashes.

● git stash pop
Restore the latest stash and
remove it from the stash list.

● git stash apply
Restore the latest stash but not
remove it from the stash list.

● git stash clear
Clear all stashes.

git ls-
files

View
files

git ls-files - ● git ls-files –d
View deleted files

● git ls-files –d |xargs git checkout
Restore deleted files

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 201

Comm
and

Funct
ion

Format Par
ame
ter

Example

git
remote

Perfor
m
opera
tions
on
the
remot
e
reposi
tory

git remote - ● git push origin master:newbranch
Create the master branch in the
remote repository and push
changes to it.

● git remote add newbranch
Create the master branch in the
remote repository and push
changes to it.

● git remote show
List the number of remote
repositories

● git remote rm newbranch
Delete a new branch from the
remote repository

● git remote update
Update branches of all remote
repositories

11.6 Using Git LFS

Background
● Git Large File Storage (LFS) is supported on CodeArts Repo. It stores large file

such as music, images, and videos outside a Git repository while users can still
easily perform operations on these files as if they were within the repository.
The Git extension allows more repository space and faster repository cloning,
and reduces the impact of large files on the Git performance.

● If the size of a file to be uploaded exceeds 200 MB, use Git LFS.
● Get started with Git LFS:

– Installing Git LFS
– Configuring File Tracking
– Committing Large Files
– Cloning a Remote Repository Containing Git LFS Files
– More About Git LFS

Installing Git LFS
The following table describes the installation on different operating systems.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 202

Table 11-4 Installing Git LFS

Operatin
g System

Installation Method

Windows Download and install Git 1.8.5 or a later version. Run the following
command in the CLI:
git lfs install

Linux Download the installation package from PackageCloud for your
operating system and CPU architecture.
Decompress the installation package, run the install.sh script to
install the software, and then run the following command to check
whether the installation is successful:
git lfs version

macOS Install the Homebrew software package management tool, and run
the following commands:
$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"
$ brew install git-lfs
$ git lfs install

Configuring File Tracking
This section describes how to configure file tracking.

Table 11-5 Configuring file tracking

Scenarios Method

Track
all .psd
files

Run the following command:
git lfs track "*.psd"

Track a file Run the following command:
git lfs track "logo.png"

View
tracked
files

Run git lfs track or view the .gitattributes file.
$ git lfs track
Listing tracked patterns
 *.png (.gitattributes)
 *.pptx (.gitattributes)
$ cat .gitattributes
*.png filter=lfs diff=lfs merge=lfs -text
*.pptx filter=lfs diff=lfs merge=lfs -text

Committing Large Files
The .gitattributes file should be pushed to the repository along with the large
files. After the push, run git lfs ls-files to view the list of track files.

$ git push origin master
Git LFS: (2 of 2 files) 12.58 MB / 12.58 MB
Counting objects: 2, done.
Delta compression using up to 8 threads.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 203

https://github.com/git-lfs/git-lfs/releases

Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 548 bytes | 0 bytes/s, done.
Total 5 (delta 1), reused 0 (delta 0)
To <URL>
<SHA_ID1>..<SHA_ID2> master -> master
$ git lfs ls-files
61758d79c4 * <FILE_NAME_1>
a227019fde * <FILE_NAME_2>

Cloning a Remote Repository Containing Git LFS Files
Run git lfs clone to clone a remote repository that contains Git LFS files to the
local computer.

$ git lfs clone <URL>
Cloning into '<dirname>'
remote: Counting objects: 16,done.
remote: Compressing objects: 100% (12/12),done.
remote: Total 16 (delta 3), reused 9 (delta 1)
Receiving objects: 100% (16/16),done.
Resolving deltas: 100% (3/3),done.
Checking connectively...done.
Git LFS: (4 of 4 files) 0 B / 100 B

More About Git LFS
For details, see the https://git-lfs.github.com.

11.7 Git Workflows

11.7.1 Overview
Create a Git workflow or branching policy that works best on your development
scenarios for effective version control, project process management, and team
collaboration.

There are four common Git workflows. The following sections describe their
processes, advantages, disadvantages, and some usage tips.

● Centralized workflow
● Feature branch workflow
● GitFlow (recommended)
● Forking workflow

Development teams can integrate CodeArts Repo and the workflow that suits
them best to efficiently manage code and secure code. This enables them to focus
more on service development to achieve continuous integration and delivery, and
fast iteration.

11.7.2 Centralized Workflow
The centralized workflow is suited to a development team that comprises around
5 members or has just migrated from SVN to Git. There is only one main branch
called master by default (trunk in SVN), which is the single entry point of changes.
However, this workflow is not recommended for teams who want to enjoy the
benefits of Git and team collaboration.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 204

https://git-lfs.github.com/

Process

Developers clone the master branch from the central repository to their local
computers, make changes to the code, and push changes to the remote master
branch.

Advantages

No branch interaction is involved.

Disadvantages
● Merge conflicts are frequent when the size of a development team is more

than 10 members. Much time is spent on conflict resolution.
● The master branch is unstable due to frequent pushes to it, making it difficult

to conduct integration tests.

Tips: Avoiding Conflicts and Unreadable Commit History

Before developing a new feature, developers must synchronize the local repository
to the central one so that they can work on the latest version. After the
development is complete, fetch updates from the central repository before
rebasing their own commits. In this way, the commits are applied on top of
changes that have been made and pushed to the central repository by other
developers. The commit history is linear and clear. The following figure shows an
example of the workflow.

1. Developers A and B pull code from the central repository at the same time.
2. Developer A completes the work and pushes it to the central repository.
3. When ready to push commits, developer B needs to first run git pull –rebase

to apply commits on top of the changes made by developer A.
4. Developer B pushes the code to the central repository.

11.7.3 Branch Development Workflow
The core of the feature branch workflow is that every feature should be developed
on a separate branch pulled off the master branch. This creates a work silo for
every developer, ensures a stable master branch, and encourages team
collaboration.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 205

Process
Before developing a new feature, each developer should pull a new branch from
the master branch and give it a descriptive name, for example, video-output or
issue-#1061, to clearly state its purpose. By pushing local feature branches to the
central repository, developers can share their code with each other without
merging code into the master branch.

Advantages
● Developers can create merge requests to have their code reviewed before

merge.
● Pushes to the master branch are less frequent.

Disadvantages
Only the master branch is used to incorporate changes. The instability of the
branch is further increased in large-scale development projects.

11.7.4 GitFlow
GitFlow is commonly seen in large-scale development projects. Each branch is
dedicated to a specific purpose and policies are made to regulate the interaction
between branches. The following figure shows the process of GitFlow.

Process
● Master branch

The master branch is the production branch where code is ready to deploy. It
is the most stable branch because changes cannot be directly pushed to it.
Developers can only merge other branches to the master branch. It is often
set as a protected branch by default, on which only the project maintainer can
operate.

● Hotfix branch
It is a temporary branch created off the master branch for fixing urgent bugs
in a live production version. After the bug is fixed, the hotfix branch gets

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 206

merged into the master branch and tagged with a version number. The bug
fix also needs to be merged to the develop branch.

● Develop branch
A develop branch is pulled from the master branch and used to merge
features. It contains all the code ready to release for integration and system
testing.

● Release branch
When a new release is coming up, developers create a release branch from
the develop branch for release preparations, such as fixing minor bugs and
producing documents. Adding new features is not allowed. They should be
merged into the develop branch and wait for the next release. When the
preparation is complete, the release branch is merged into the master branch
and the commit is tagged with a version number. The changes made in the
release branch also need to be merged to the develop branch.

● Feature branch
Feature branches are pulled from the develop branch for feature
development. When the development is complete, they are merged into the
develop branch. Feature branches do not interact with the master branch.

Developers add new features in either of the following ways:

● Integrate features after reviewed by a dedicated approver.

a. Developers push feature branches to the central repository in CodeArts
Repo.

b. Developers then create merge requests for merging the feature branches
into the develop branch, and assign the requests to the reviewer.

NO TE

CodeArts Repo supports MRs. You can choose source branches and target
branches. Only repository administrators (project managers, repository creators,
and developers granted with repository management permissions) can accept
MRs.

c. The approver reviews the merge requests. If the requests are approved,
the feature branches are merged into the develop branch and deleted.
Otherwise, the approver should explain the reasons of rejections.

● Integrate features after self-reviews.

a. Developers merge feature branches to the develop branch in the local
repository and delete the feature branches.

b. The local develop branch is then pushed to the central repository in
CodeArts Repo.

Advantages
● With a branch dedicated for release preparation, a development team can

develop new features for a future release on the develop branch while
improving the version for the upcoming release. Release is visualized, which
means team members can have a clear view of the release status in commit
graphs.

● Hotfix branches, which can be seen as temporary release branches created off
the master branch, enable development teams to fix urgent bugs without

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 207

interrupting other works. You do not have to wait until next release but can
quickly deploy fixes to the production version.

● Effective multi-branch mechanism allows for organized development process
especially for large-scale projects.

● This workflow is more in line with the DevOps philosophies.

Disadvantages
● High learning thresholds.
● Impact will be greater if development teams do not comply with their

specified workflow policies.

11.7.5 Forking Workflow
The forking workflow is suitable for outsourcing, crowdsourcing, crowdfunding,
and open source projects. One of the features that distinguish this workflow is
that every contracting developer has a personal public repository, which is forked
from the project public repository. Developers can perform operations on the forks
without the need of being authorized by the project maintainer. The following
figure shows the process of the forking workflow.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 208

Process
1. Developers fork the project public repository to create personal public ones.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 209

2. The personal public repositories are cloned to their local computers for
development.

3. After the development is complete, developers push changes to their personal
public repositories.

4. Developers file merge requests to the project maintainer for merge to the
project public repository.

5. The project maintainer pulls changes to the local computer and reviews the
code. If the code is approved, it is pushed to the project public repository.

NO TE

If the code written by a developer is not approved and therefore, not merged to the project
public repository, other developers can still pull the code from the personal public
repository of the developer for references.

Advantages
● Code collaboration is easier. Developers can share their code by pushing it to

their personal public repositories for others to pull, unlike some workflows
where developers cannot see others' work until it is merged into the project
repository.

● Project maintainers do not have to grant permissions on project public
repositories to every contributor.

● Merge requests serve as an important guard for code security.
● The three workflows introduced previously can be incorporated into the

forking workflow based on project requirements.

Disadvantages
It takes more steps and time before the code of developers gets merged into the
project repository.

CodeArts Repo
User Guide 11 More About Git

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 210

	Contents
	1 Overview
	2 Git Installation and Configuration
	2.1 Installing and Configuring Git
	2.2 Installing Git Bash for Windows
	2.3 Installing TortoiseGit for Windows
	2.4 Installing Git for Linux
	2.5 Installing Git for macOS

	3 Setting SSH Key or HTTPS Password for CodeArts Repo Repository
	3.1 Overview
	3.2 SSH Keys
	3.3 HTTPS Password

	4 Migrating Data to CodeArts Repo
	4.1 Overview
	4.2 Migrating an SVN Repository to CodeArts Repo
	4.3 Importing a Remote Git Repository to CodeArts Repo
	4.4 Uploading Local Code to CodeArts Repo

	5 Creating a CodeArts Repo Repository
	5.1 Overview
	5.2 Creating an Empty Repository
	5.3 Creating a Repository Using a Template
	5.4 Importing an External Repository
	5.5 Forking a Repository

	6 Associating the CodeArts Repo Repository
	7 Cloning or Downloading Code from CodeArts Repo to a Local PC
	7.1 Overview
	7.2 Using SSH to Clone Code from CodeArts Repo to a Local PC
	7.3 Using HTTPS to Clone Code from CodeArts Repo to a Local Computer
	7.4 Downloading a Code Package on a Browser

	8 Using CodeArts Repo
	8.1 Viewing the Repository List
	8.2 Viewing Repository Details
	8.3 Viewing Repository Homepage
	8.4 Managing Code Files
	8.4.1 Managing Files
	8.4.2 Managing Commits
	8.4.3 Managing Branches
	8.4.4 Managing Tags
	8.4.5 Managing Comparison

	8.5 Managing MRs
	8.5.1 Managing MRs
	8.5.2 Resolving Code Conflicts in an MR
	8.5.3 Detailed Description of Review Comments Gate
	8.5.4 Detailed Description of Pipeline Gate
	8.5.5 Detailed Description of E2E Ticket Number Association Gate
	8.5.6 Detailed Description of Review Gate
	8.5.7 Detailed Description of Approval Gate

	8.6 Viewing Review Records of a Repository
	8.7 Viewing Associated Work Items
	8.7.1 Introduction
	8.7.2 Commit Association

	8.8 Viewing Repository Statistics
	8.9 Viewing Activities
	8.10 Managing Repository Members
	8.10.1 IAM Users, Project Members, and Repository Members
	8.10.2 Configuring Member Management
	8.10.3 Repository Member Permissions

	9 Configuring CodeArts Repo
	9.1 General Settings
	9.1.1 Repository Information
	9.1.2 Notifications

	9.2 Repository Management
	9.2.1 Repositories
	9.2.2 Space Freeing
	9.2.3 Synchronization
	9.2.4 Submodules
	9.2.5 Repository Backup

	9.3 Policy Settings
	9.3.1 Protected Branches
	9.3.2 Protected Tags
	9.3.3 Commit Rules
	9.3.4 Merge Requests

	9.4 Service Integration
	9.4.1 E2E Settings
	9.4.2 Webhooks

	9.5 Security Management
	9.5.1 Deploy Keys
	9.5.2 IP Address Whitelists
	9.5.3 Risky Operations
	9.5.4 Watermarks
	9.5.5 Repository Locking
	9.5.6 Audit Logs

	10 Submitting Code to the CodeArts Repo
	10.1 Creating a Commit
	10.2 Transmitting and Storing a File in Encryption Mode
	10.3 Viewing Commit History
	10.4 Pushing Code to CodeArts Repo Using Eclipse

	11 More About Git
	11.1 Using the Git Client
	11.2 Setting Password-Free Access via HTTPS
	11.3 Using the TortoiseGit Client
	11.4 Use Cases on the Git Client
	11.4.1 Uploading and Downloading Code
	11.4.2 Committing Letter Case Changes in File Names to the Server
	11.4.3 Setting the Line Ending Conversion
	11.4.4 Committing Hidden Files
	11.4.5 Pushing a File That Has Been Changed on the Server

	11.5 Common Git Commands
	11.6 Using Git LFS
	11.7 Git Workflows
	11.7.1 Overview
	11.7.2 Centralized Workflow
	11.7.3 Branch Development Workflow
	11.7.4 GitFlow
	11.7.5 Forking Workflow

