CodeArts Repo

User Guide

Issue 01
Date 2023-09-05

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base
Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to "Vul. Response Process". For
details about the policy, see the following website:https://www.huawei.com/en/psirt/vul-response-process
For enterprise customers who need to obtain vulnerability information, visit:https://
securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory
https://securitybulletin.huawei.com/enterprise/en/security-advisory

CodeArts Repo

User Guide Contents

Contents
T OVEIVIEW...ueieeeeeeeeneeeenieeesnnesessnssssesssessesssessessssssesssssssssssssssssssssssssssessssssssssessssssesssssassassssasanss 1
2 Git Installation and Configuration............ et ceceecee e cseeseesseesasnes 5
2.7 Installing @and CONFIGQUIING Giti....oceurviieriierieisieieieissies et tssss s s s st st sssssssssssss s s st s sssesssssssssssssansns 5
2.2 Installing Git Bash fOr WINAOWS.........ociiiieecieeeieeiee et iessssesssassss s st sss e sss s s s s s sesssssssssssssssessssesssssassessssans 5
2.3 Installing TOrtoiSEGIt fOr WINAOWS.........cciueiieieeieeeeeieisieies ittt ssssas s bbbt sssssss s sassas s ss st sessesanses 6
2.4 INSLALLING GIL FOI LINUX.uururiererierieeisieieissississesessiesssss st sesssssss st s ssessessssssssssans 8
2.5 INStalling Git fOr MACOS.......ooeecteecte ettt ettt s s bbb bbb es s s b s s s st esssbesssssnsssnsesnsesansasas 8
3 Setting SSH Key or HTTPS Password for CodeArts Repo Repository.......c..cccceeeeuneeee. 9
3.1 OVEIVIBW..c..cvuiiiriceiriieraiese sttt ts st s st e e ettt s et tsensenacnacn 9
3.2 SSH KBYS.... ettt ettt ettt ettt £t R bttt e At A ettt h b ettt st et e et et et e aetat 10
3.3 HTTPS PASSWOI.....couiuuiieeiieniiseireieeiseiseese st esse e esse e ases s et e ettt 13
4 Migrating Data to COAEAIS REPO........uccueeeeceeeerceeeeseeeeessessnessessassseessssseesssssessssssessasenes 16
A1 OVEIVIEW...uueeriacrneireneineseesessessessessasessessesesse e sssasesasssesesssessssesassstssesssnesesssssessesassatssssessnssesassaessesssstssssssssesnesnesessssssessesas 16
4.2 Migrating an SVN Repository t0 COAEAITS REPO.......ccoiuriurierieririeisieiseisesseiseisesissssssssssssessessssssssssssssssssssesssessen 16
4.3 Importing a Remote Git Repository to COAEAIS REPO.......ieeeeeeeeirieeteee ettt 20
4.4 Uploading Local Code t0 COAEAITS REPO........c.crriririnririeneenisisssans 23
5 Creating a CodeArts Repo RePOSItOry........ciceveereeceecreeceeereerneeeecneeeessessesssessessnsesassnens 25
5.1 OVEIVIEW....cvuiiieieieiceieee ettt et sses st ase s et eb s e s e st s bbbt bt se bbb e s sacen 25
5.2 Creating an EMPLY REPOSITONY ...ttt sttt e st st sssss s sss st ssssssssessssssssesssssssssnnas 26
5.3 Creating a Repository USING @ TEMPLAtO........ccceiieieceeceeieieie ittt st st sessse s s s ssssssassassansans 29
5.4 IMporting an EXEEINAl REPOSITONY.....c.vieeierieriririsieisireiseessessisssans 31
5.5 FOIKING @ REPOSITONY....cuiieeieieeiiieierieisie ittt sas s s st s s s sas st a bbb st s s s s s s st s s sessssessnsnsanssas 33
6 Associating the CodeArts Repo RepoSitory........iieciccencercrensncsensnecseesaneseesanessssnnens 37
7 Cloning or Downloading Code from CodeArts Repo to a Local PC............c.ccceeueuueee 40
7.1 OVEIVIEW.....vuirinirereieseeseeaeenetseseasessessesese s ssease s ssessesssssse e asessessesessesassss e sasssesssssessssessssnssesassnesessesssssesaesnsssessesnesessesaes 40
7.2 Using SSH to Clone Code from CodeArts Repo to @ LOCAl PC........o.iiriieiiceereecteesteestene st 40
7.3 Using HTTPS to Clone Code from CodeArts Repo to @ Local COMPULET.........c.oveeeveererrerrereneeeeereeisie s 44
7.4 Downloading a Code PAackage ON @ BIrOWSE.........ieierierininisisisisssssessesssessans 48
8 USING COAERAILS REPO......ueieeeeecreeeeceereeceesaeeeeseesseesasssessaseseesssssesssssssesssssasssssssessassasssassassaes 49
8.1 ViIieWiNg the REPOSITOIY LiSt.....ccciicricriririiieiiesieiessisieisssisisssesseses 49

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. iii

CodeArts Repo

User Guide Contents
8.2 VieWiNg REPOSITOIY DELAILS......cocvreererireirieiieisieieise sttt sss s sttt ss s sss bbbt st ssssssssssssssnsas 50
8.3 VieWing RePOSItOry HOMEPAGE. ...ttt sse st s st sassssassssnssssssssensessssssasssssssssans 52
8.4 MANAGING COUE FIleS....uiuiririeieereirie ettt ss st st s ettt s s st s snsenens 54
84T MANAGING FIlES...ueeieieeieieieeieieee ettt bbbt st ss bbbt s s s b s s s bbb es s st e s s s s b s en s s sensessnsanen 54
8.4.2 MaNAGING COMIMIES....cuiiirieiriciricirie ettt et bbbttt ettt ettt sttt bbbt etae 59
8.4.3 MANQAGING BraNCRES......ceeeieeeecie ettt sttt s st s bbbt ss s s s se st ensensessesssanen 59
8.4.4 IMANAQGING TAGS. .ttt ettt ettt ettt e et b b st eas et e bt s st et st ae b e bt ae s et et e as s et e bt asae s et e aeaebesstasassetetnsanans 70
8.4.5 MaNAQiNG COMPATISON.....curiiiriiirieireieiriaeiseietsete ettt sttt eastsese st se st se s bbb st b st b et st st b seastseastsesstssessssesassesasins 76
8.5 MANAGING MRSttt sttt sttt as s st s et as s bbb as s s e st s e et eeas s ee st esssssnsesassssassesassesassesassnsans 77
8.5.T MANQAQGING MRSttt sttt st s s s s s s s e s e s s et aas et st e s ssesessesssssesassesssssesssassesesnsansnses 77
8.5.2 Resolving Code CONFLICES IN @N IMRu..... ettt sttt sss s sss bbbt sssssssssassas s snen 84
8.5.3 Detailed Description of ReView COMMENTS GAt.........cceveieieiriniericee et esesassassss bbb ssessesasssesassanes 91
8.5.4 Detailed Description Of PIPELINE GALe.......covririririririreiseireesesesie sttt ssssss st snssssssssssnsanen 92
8.5.5 Detailed Description of E2E Ticket Number AssOCiation Gate.........ccceevrrerrrrineenieneeinisississssessessessessessnsans 93
8.5.6 Detailed Description Of REVIEW GALE.......cccuieeieieeeieeieieecieesieee ettt sesss st ss st st st esasssssssessssessssssssssssnsas 94
8.5.7 Detailed Description Of APProval GAte........cireireerieririnisissississeesisss st sssenes 96
8.6 Viewing Review ReCOrds Of @ REPOSITOIY......cccoririrrireiniinrineiseiseiseiesesss s sssessssssssssssssesssessessssssssssassssssssssssasssssanens 97
8.7 Viewing ASSOCIAtEA WOIK [EEIMIS......oieiieeeie ettt ssss s st sssssssssanssnen 99
8.7 INEFOAUCLION. ..ottt bbbt s bbb bbb s a bbbt s s b s bbb et s s san bbbt nen 99
8.7.2 COMMIL ASSOCIALION....cucueerercecicrete ettt s ettt s s asenne 102
8.8 VIeWiNg REPOSITONY STAtiSTICS...c.viirieieieieieireeis ettt et sttt seeas 106
8.9 VIBWING ACHIVITIES ...ttt ettt sttt et ettt eae 107
8.10 Managing REPOSItOrY MEMDEIS.........ovovririririeireissisiesesses st sesssssss st st sssssssssssssssss st sssesssssssssssnen 107
8.10.1 IAM Users, Project Members, and RepOSItOry MEMDEFS............ooveieirierieieieeeeee st sasssesnsns 108
8.10.2 Configuring Member Man@geMIENT.........c.corurirrerienierenereeesissesessessssssss s sssssssssssssesssssssssssssssssssssssssssssssssans 108
8.10.3 RePOSItOry MEmMDEI PEIMISSIONS......c.ciiiierirrieiesieeiessis s issasssssesssssss s s sssssssssssssssssssssssssssesssssesssssnsassanssssensnes 111
9 Configuring COA@AIES REPO........uceuieiereicieeicteeecensneceensenesasessssassssssassssssasessssasssaassans 121
0.7 GENEIAL SEULINGS.....ou ettt sttt bbb e st as e bbbt et s s s b s bbbt en s e st assassan s s sansens 121
9.1.71 RePOSItOrY INFOMMATION.. ..ottt s st st s e s s snssnsnsnns 121
0.7.2 NOTI ICATIONS. ..o ettt b st s s ss bbbt s s bbbt s b s b s b s bbbt s st ssnsansas 122
9.2 RePOSItOrY MaANQGEMENT......coiiriieieieiieeiete sttt ettt st sese st e s st s e sss s s ssssssssesssssssssssssssssessssssssssssnssssnsasnsansesas 124
O.2.1 REPOSITOTIES. ..ttt ettt sttt s ss ettt st e s et s b s st et se b s et assetassetasseeas 124
O.2.2 SPACE FIBEING ...ttt ettt ettt ettt s et sttt et e ae b et ae s bbb eae bbb seasseteessansesetssansnaa 127
9.2.3 SYNCNIONIZATION.....ce ettt es s s s s st ss s s s et et e s sa s s s sasssnsens st ensnssnssns 127
0.2.4 SUDIMOAULES........cceeeierieiricteeteee ettt bbbt s s sa bbbt st s s s s e bbbt et s s s b s b s bbb s s s sansansas 128
9.2.5 REPOSITONY BACKUP. ..ottt s sttt b s b s bbb as b s st s st s s senases 131
0.3 POLICY SEULINGS....vivririerieierieeie sttt sttt sss s bbb sttt ss s a s bbb et b s s s b s st b s es s ssssae s s sans st enee 132
0.3.T Prot@CLEA BranCRES........cuiureeeiereeeeieeireie ettt st s ss et s s st s bbb es s saneseees 132
0.3.2 PrOLECLEA TaGS. .. cuieriereerireirieissieissiseesees s sssss st sssessssssss st st ssssssssssssssssssssssssesasssssssssssssssssssassssassssssssssssnssansensnns 133
0.3.3 COMMUL RULES......eeeieierieicistest ettt sttt ss bttt s et s s s bbbt s s s s b s bbb st es s s s sassansansensnenns 134
0.3.4 MEIGE REGUESTS....... ettt sttt sttt sttt bbbttt se st se et s et s bbbt s et bebaesetasseeas 139
9.4 SEIVICE INTEGIATION....ceiiieeieeiceeieteete ettt sttt st as s as s st e st e s b s s b assesasteeasseeasseeassenassenans 144

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. iv

CodeArts Repo

User Guide Contents
04,1 E2E SEELINGS. cou vttt ettt sttt et sttt ettt bae e tae bbb e et ben e astens 144
0.4.2 WEDRNOOKS......coeett ettt e bbbttt een 149
9.5 SECUNLY MANAGEIMENT ...ttt se s s s s s bbb e e st sas s e s e s sassensssensssensssnsssrnas 151
O.5.71 DEPLOY KEY Sttt sss s ssssss s ssssssssssssss st ss st st ssssssssssssssasssssesssssssssssnsssssssssssnssessssnsssssnsassansenes 151
O.5.2 1P AQAreSS WHITELISTS......cueeeeeeeieieireiriee ittt es ettt sttt s beeen 151
0.5.3 RISKY OPEIALIONS......ccvieereierieeieieissisisteetesessse s st st sessssssssss s s st et ss s s s ss s s b st en s s sss s s s bs b b st s s en s ssesansansensenens 154
0.5.4 WATEIIMAIKS.... ottt st s bbbt sttt 154
9.5.5 REPOSITONY LOCKING ...ttt sttt 155
0.5.6 AUCIL LOGS. ..ottt ses st s sttt ss s s bbb ss s s s bbbt e s s s b s s s b s b bbb en s s s ebsesansansnsentens 156
10 Submitting Code to the COdeArts REPO........ueeeeeeeeeereeneecneeeesneeseesseeseesseesnesseessessens 157
TO.T Creating @ COMMUT... ettt ettt ss st s st ss e ss st esas s e s s s tss s sse s ssessssssssssssssssassesassessssesasssanes 157
10.2 Transmitting and Storing a File in ENCryption MOde..........oiriririnesenencneseeie st ssssnens 160
10.3 VIEWING COMMUE HISTOTY ...ttt sttt sttt ettt eien 170
10.4 Pushing Code to CodeArts REPO USING ECLIPSE......ouririeiririieeieieeiessieis s tesissessasssssss s ssssssesssssssssssssasssnens 171
L I N o T T UL 1 O 183
117 USING ThE GIt CLIENT ..ottt sttt st s s s bbb bbb s s s s bbb st ensesaes 183
11.2 Setting Password-Free ACCESS VIa HTTPS ...t assesssssss s s s ssssssssssssssssssssssssssssssssnns 186
11.3 USING the TOrTOISEGIt CLENT.....c.cvueeeeeeieieicireir ettt ettt es sttt es st e bnses 188
17.4 USe CaseS 0N The GIt CLENT. ...ttt ettt s eb e ts bbb 193
11.4.1 Uploading and DowWNLOAdiNg COAE.........viinririninenisieisissesessssasssnns 193
11.4.2 Committing Letter Case Changes in File Names t0 the Server........ e 194
11.4.3 Setting the Line ENAING CONVEISION.......ouiiririeeiriieeteeeieeie st issesssssssssssss s st s sessssssssssssssssssssssssessssssssssansans 194
11.4.4 COMMIEEING HIAAEN FIlES ..ottt sttt st s st et s s ssnssnsns 195
11.4.5 Pushing a File That Has Been Changed 0N the SEIrVer ...t 195
17.5 COMMON Gt COMMANGS.....cuieieiencereireineeereirete ettt essease e es s e ts b ts et s s et bbbt eese b assaes 196
176 USING Gt LFS ..ottt ettt bbb s b ettt 202
1717 Gt WOTKFLOWS. ..ottt ettt ettt bbbt anenen 204
TT1.7.1 OVEIVIEW.eueeieiiciretseteetetie ettt ebe et ettt st bbb bbbt bbb sttt bt et 204
17.7.2 CeNLraliZed WOIKFLOW. ...cccuuieieieci ittt ettt st s e 204
11.7.3 Branch DevelopmMent WOIKFLOW. ..ottt s sttt esse st ssses 205
1174 GIEFLOW ...ttt e bbb bbbt 206
171.7.5 FOrKING WOTKILOW. ...ttt s sttt ensnsaes 208

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. v

CodeArts Repo
User Guide

1 Overview

Overview

CodeArts Repo is a distributed version management platform that uses the Git
workflow. It provides functions such as security management, member and
permission management, branch protection and merge, online editing, and
statistical analysis. The service aims to address issues such as cross-distance
collaboration, multi-branch concurrent development, code version management,
and security.

To start a new project, you can use CodeArts Repo built-in repository templates to
create a repository for development. For details, see Starting R&D Projects in
CodeArts Repo.

If you are developing a project locally and want to use CodeArts Repo to manage
versions, you can migrate the project to CodeArts Repo. For details, see Migrating
a Local Project to CodeArts Repo.

Starting R&D Projects in CodeArts Repo

You can use repository templates provided by CodeArts Repo to create a project
and start development. The following figure shows the workflow.

Prepare Routine Review merge
environment development request

Subscribe to this
service

Repository
administrator

Create repository using
template

Use tags to manage
versions

Merge code

Configure repository View commit records Review merge request

Configure Git Commit code to cloud

: . Create merge request
environment repository

Configure SSH key/ Create dev branch

l HTTPS password

Developer Clone or download
repository to local PC

The operations involved are as follows:

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 1

CodeArts Repo
User Guide 1 Overview

e 5.3 Creating a Repository Using a Template

e 8.10.2 Configuring Member Management

e 9 Configuring CodeArts Repo

e 2 Git Installation and Configuration

e 7 Cloning or Downloading Code from CodeArts Repo to a Local PC
e 8.4.3 Managing Branches

e 8.4.4 Managing Tags

e 10 Submitting Code to the CodeArts Repo

e 8.5.1 Managing MRs

e 55 Forking a Repository

Migrating a Local Project to CodeArts Repo

To manage code versions of a locally developed project using CodeArts Repo, you
can bind the local repository to CodeArts Repo and complete initial push. Then,
you can continue developing your project in the distributed version management
mode. The following figure shows the workflow.

Prepare Routine Review merge
environment development request

Subscribe to this
service

Repository
administrator

Create empty Use tags to manage

) : Merge code
repository versions

Configure repository View commit records Review merge request

Initialize local Commit code to cloud
repository using Git repository

Create merge request

Configure SSH/HTTPS

password Create dev branch

b 3

Developer

Bind to cloud
repository

Complete initial push

The operations involved are as follows:

e 5.2 Creating an Empty Repository

e 8.10.2 Configuring Member Management

e 9 Configuring CodeArts Repo

e 2 Git Installation and Configuration

e 6 Associating the CodeArts Repo Repository

e 7 Cloning or Downloading Code from CodeArts Repo to a Local PC
e 8.4.3 Managing Branches

e 8.4.4 Managing Tags

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 2

CodeArts Repo
User Guide

1 Overview

10 Submitting Code to the CodeArts Repo
8.5.1 Managing MRs
5.5 Forking a Repository

Distributed Version Management

There is a complete code repository on your local computer and in CodeArts Repo
respectively.

All version information can be synchronized to the local computer for viewing.

You can commit code offline on the local computer and push the code to the
CodeArts Repo repository when the network is connected.

CodeArts Repo

Version Database

Basic Workflow

Version 3
Computer A Computer B
o, S Version 2 N,
File —— File
M N (! |
\J L]/ KT >

Version 3 Version 3

Version 2

Version 2

Version 1 Version 1

CodeArts Repo is a cloud repository service that uses the Git workflow.

Data in a Git local repository can be in one of the three statuses: modified,
staged, and committed. The file you modified in the repository is in the
modified state. You can run the add command to add the changes to the
local staging area. Then, the file is in the staged state. Run the commit
command to commit the changes to the local repository for management.
The corresponding version and version number are generated upon each
commit. You can switch and roll back a version based on the version number.
A version can have multiple branches and tags. Each branch, tag, or commit is
an independent version that can be checked out using the checkout
command.

As a cloud repository service, CodeArts Repo not only has the basic features of
local Git repositories, but also serves as the remote repository of each local
repository and provides configurable security policies and authentication.

A CodeArts Repo cloud repository interacts with a Git repository in the
following scenarios:

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 3

CodeArts Repo
User Guide

1 Overview

clone: clones the branch in CodeArts Repo to the local computer as a
local repository.

push: pushes changes in the local repository to CodeArts Repo.

fetch: fetches a version from CodeArts Repo to the working directory.
pull: fetches a version from CodeArts Repo to the working directory and

tries to merge it into the current branch. If the operation fails, you need
to manually resolve the file conflict.

pull

-

fetch/clone

checkout

add

commit

BT R

push

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 4

CodeArts Repo
User Guide 2 Git Installation and Configuration

Git Installation and Configuration

2.1 Installing and Configuring Git

2.2 Installing Git Bash for Windows
2.3 Installing TortoiseGit for Windows
2.4 Installing Git for Linux

2.5 Installing Git for macOS

2.1 Installing and Configuring Git

CodeArts Repo is a Git-based service. Git clients such as Git Bash or TortoiseGit
must be installed on local computers to connect to CodeArts Repo. The following
sections describe how to install and configure Git Bash and TortoiseGit on
Windows, Linux, and macOS.

If you have installed Git and configured the signature and email address, skip the
following sections:

e 2.2 Installing Git Bash for Windows

e 2.3 Installing TortoiseGit for Windows
e 2.4 Installing Git for Linux

e 2.5 Installing Git for macOS

(11 NOTE

GitHub Desktop is not supported in CodeArts Repo.

2.2 Installing Git Bash for Windows

Git Bash is a simple and efficient client on Windows for users who are familiar
with Git commands. If you are unfamiliar with Git commands, you can use
TortoiseGit by referring to 2.3 Installing TortoiseGit for Windows.

1. Install the Git Bash client.

a. Go to the Git Bash website and download the installation package for
32-bit or 64-bit Windows.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 5

https://git-scm.com/download/win

CodeArts Repo
User Guide 2 Git Installation and Configuration

b. Double-click the installation package. In the installation window
displayed, click Next for several times and then click Install.

2. Open the Git Bash client.

Click the Windows start icon, enter Git Bash in the search box, and press
Enter to open Git Bash. You are advised to pin Git Bash to the Windows
taskbar.

3. Configure the Git Bash client.

Enter the following commands in Git Bash to configure your username and

email address:
git config --global user.name your_username
git config --global user.email your email address

Run the following command to view the configurations:
git config -1

(10 NOTE

e A username can contain letters, digits, and special characters. You are advised to
set the same username as that in CodeArts Repo.

e The email address should be written in the standard format.

e The --global parameter in the commands indicates that the configurations apply
to all Git repositories on your computer. However, you can set a different username
and email address for a specific repository.

2.3 Installing TortoiseGit for Windows

TortoiseGit is a better choice if you are not familiar with Git commands or you
hope to migrate code from an SVN client such as TortoiseSVN. TortoiseGit is a
Windows shell interface to Git as TortoiseSVN to SVN.

Prerequisites

1. Go to the TortoiseGit website and download the installation package for 32-
bit or 64-bit Windows.

2. Double-click the installation package. In the window displayed, click Next for
several times and then click Install to complete the installation. Click Finish
to run the tool.

3. In the first start wizard displayed, select a language, enter a Git.exe path (the
field is automatically filled with an available path if there is any), and
configure a username and email address. Keep the default values and click
Next till the settings are finished.

(Optional) Localization

TortoiseGit is installed in English by default. If you want to use a translated version
of TortoiseGit, go to the TortoiseGit website to download your desired language
pack.

Configurations

TortoiseGit also requires a key pair for authentication with the CodeArts Repo
server. To generate a key pair, perform the following steps:

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 6

https://tortoisegit.org/download/
https://tortoisegit.org/download/

CodeArts Repo
User Guide 2 Git Installation and Configuration

1. Search for PuTTYgen and open it. In the displayed window, click Generate to
generate a key pair.

E? PuTTY Key Generator ? *
File Key Conversions Help
Key

Please generate some randomness by moving the mouse over the blank area.

Actions
Generate a public/private key pair Generate

Load an existing private key file Load

Save the generated key Save public key Save private key

Parameters

Type of key to generate;

RSA DSA ECDSA EdDSA SSH-1{RSA)
Mumber of bits in a generated key: 2048
(O NOTE

PuTTYgen is a powerful, compact, and easy-to-use tool for generating pairs of public
and private keys. It is installed along with the TortoiseGit installation and does not
conflict with the one built in PuTTY.

2. After the key pair is generated, store the public and private keys.

- Click Save private key. In the dialog box that is displayed, enter a file
name and save the private key file.

- Click Save public key. In the dialog box that is displayed, enter a file
name and save the public key file.

3. Copy the public key in the red box in the following figure and bind it to
CodeArts Repo.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 7

CodeArts Repo
User Guide 2 Git Installation and Configuration

File Key Conversions Help

Key fingemprint :

Key comment: |rsa+:eg,--2D23D41 5 |

Key passphrase: | |

Corfirm passphrase: | |

Actions

Generate a public/private key pair Generate
Load an existing private key file Load

Save the generated key Save public key Save private key
Parameters

Type of key to generate:
i® RSA (IDSA (JECDSA () Ed25515 () 55H-1 {RSA)

Mumber of bits in a generated key:

4. Bind the private key to the local client.

Search for Pageant and open it. In the displayed window, click Add Key, and
select the generated private key file.

2.4 Installing Git for Linux

e Debian or Ubuntu

Run the following command in the terminal:
apt-get install git

e Fedora, CentOS, or Red Hat

Run the following command in the terminal:
yum install git

e For more OSs, see the Git official website.

2.5 Installing Git for macOS

e You can quickly install Git on macOS by installing Xcode command line tools.

e On Mavericks 10.9 or a later version, run the git command on the Terminal.
The system will prompt you to install the command line tools if you have not.

e If you want to install Git of a later version, go to the Git website and
download the latest version for macOS.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 8

CodeArts Repo 3 Setting SSH Key or HTTPS Password for CodeArts
User Guide Repo Repository

Setting SSH Key or HTTPS Password for
CodeArts Repo Repository

3.1 Overview
3.2 SSH Keys
3.3 HTTPS Password

3.1 Overview

What Is an SSH Key and HTTPS Password?

When you push code to or pull code from CodeArts Repo repository, the repository
needs to verify your identity and permissions. SSH and HTTPS are two
authentication modes for remote access to CodeArts Repo.

e 3.2 SSH Keys: An SSH key is used to establish a secure connection between
your local computer and CodeArts Repo under your account.

Before connecting to CodeArts Repo in SSH mode, generate an SSH key on
your computer and configure it in CodeArts Repo.

After you configure an SSH key on a local computer and add the public key to
CodeArts Repo, you can use the SSH key to access all code repositories under
your account from your computer.

e 3.3 HTTPS Password: An HTTPS password is a user credential used for pulling
and pushing code using the HTTPS protocol.

The maximum size of a package that can be pushed at a time using HTTPS is
200 MB. If the size is greater than 200 MB, use the SSH mode.

Federated users cannot be bound to email addresses and do not support the
HTTPS protocol.

(10 NOTE

Either SSH or HTTPS can be used to push or pull code. Set SSH keys or HTTPS passwords as
required.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 9

https://support.huaweicloud.com/eu/usermanual-iam/iam_08_0001.html

CodeArts Repo 3 Setting SSH Key or HTTPS Password for CodeArts
User Guide Repo Repository

3.2 SSH Keys

Introduction

When you push code to or pull code from CodeArts Repo, the repository needs to
verify your identity and permissions. SSH is an authentication mode for remote
access to CodeArts Repo.

e An SSH key is an encrypted network transmission protocol that establishes a
secure connection between your computer and CodeArts Repo under your
account.

e After you configure an SSH key on a local computer and add the public key to
CodeArts Repo, you can use the SSH key to access all code repositories under
your account from your computer.

e Before connecting to CodeArts Repo in SSH mode, generate an SSH key on
your computer and configure it in CodeArts Repo.
Generating and Configuring an SSH Key
The following procedure describes how to generate a public key and bind it.
Step 1 Install the Git Bash client by referring to 2.2 Installing Git Bash for Windows.
Step 2 Check whether your computer has generated a key.

Run the following command on the local Git client:

cat ~/.ssh/id_rsa.pub

e If No such file or directory is displayed, no SSH key has been generated on
the computer. Go to Step 3 to generate and configure an SSH key.

fd/gitTest

‘1d_rsa. pub

fTwx f.ssh/id_rsa.pub: Mo such file or directory

e If at least one group of keys is returned, an SSH key has been generated on
your computer. To use the generated key, go to Step 4 directly. To generate a
new key, go to Step 3.

h/1d_r=a. pub

TN. Com

Step 3 Generate an SSH private key.

Run the following command on the local Git client to generate a new SSH key:
ssh-keygen -t rsa -C "Your SSH key comment"

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 10

CodeArts Repo 3 Setting SSH Key or HTTPS Password for CodeArts
User Guide Repo Repository

Perform the following operations. If information similar to the preceding figure is
displayed, the key is generated.

1. The system prompts you to enter the storage path of the key. You can press
Enter to use the default path.

2. If a key already exists in the local path, the system asks you whether to
overwrite it. Enter n to cancel key generation, or enter y and press Enter to
overwrite the existing key. In this example, the existing key is overwritten.

3. The system prompts you to set a password for the key and confirm the
password. If you do not want to set a password, press Enter.

NOTICE

e |f a password is set (recommended), the generated private key file is stored
after being encrypted by AES-128-CBC.

e |f you press Enter without entering the password, the generated private key file
id_rsa is stored locally in plaintext. Keep it secure.

Step 4 Copy the SSH public key to the clipboard.

Run the following command based on your operating system to copy the SSH
public key to your clipboard. Take Windows as an example. If no command output
is displayed, the public key is copied.

e Windows
clip < ~/.ssh/id_rsa.pub

e macOS
pbcopy < ~/.ssh/id_rsa.pub

e Linux (xclip required)
xclip -sel clip < ~/.ssh/id_rsa.pub

Step 5 Log in to the CodeArts Repo service repository list page, click the alias in the
upper right corner, and choose This Account Settings > SSH Keys.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 11

CodeArts Repo 3 Setting SSH Key or HTTPS Password for CodeArts
User Guide Repo Repository

]

o 007 =~

SHEE)
o,
1O o
Py ThiE
2 ®
—— =
arae N ziees
® BuEs

Alternatively, log in to the repository list page of CodeArts Repo and click the
o SE135HKEY jcon to go to the SSH Key page.

Step 6 On the SSH Keys page, click Add SSH Key. The Add SSH Key page is displayed.

Add SSH Key

For details about how to generate an SSH key, see the guidance below.

You can add SO00 more characters

1 have read and agree to the Privacy Statement and CodeArts Service Statement

m cancsl

Step 7 Enter a key name, paste the SSH public key copied in Step 4 to the Key text box,
select | have read and agree to the Privacy Statement and CodeArts Service
Statement, and click OK. A message is displayed, indicating that the operation is
successful.

(11 NOTE

e An SSH key cannot be added repeatedly. If an SSH key fails to be added, check whether
it has already been added or whether there are redundant spaces in the key.

e After the key is added, you can view it on the SSH Keys page. If it is no longer used, you
can delete it.

e The difference between an SSH key and repository deploy key is that the former is
associated with a user/computer and the latter is associated with a repository. The SSH
key has the read and write permissions on the repository, and the deploy key has the
read-only permission on the repository.

--—-End

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 12

CodeArts Repo
User Guide

3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

Verifying Whether an SSH Key Is Bound

When an SSH key is bound, you can perform SSH-clone on the repository that you
have the access permission on the client. If the clone is successful, the key is
bound.

(11 NOTE

If you use SSH to clone a repository to the local computer for the first time, the message
"The authenticity of host *.*.com can't be established. RSA key... (yes/no)?" is displayed.
Enter yes to continue.

3.3 HTTPS Password

Introduction

When you push code to or pull code from CodeArts Repo, the repository needs to
verify your identity and permissions. HTTPS is an authentication mode for remote
access to CodeArts Repo.

e HTTPS username

The value can be the tenant name or IAM username. Enter the complete
username. If you want to add the username to the URL, escape '/' to ' %2F'.

(11 NOTE

When setting the HTTPS password for the account (the account name is the same as
the username), you can enter only the account name.

e HTTPS password

- Enter a password containing 8 to 32 characters. The password must
contain at least three types of digits, uppercase letters, lowercase letters,
and special characters. It cannot be the same as the username or the
username spelled backwards.

- An HTTPS password is a user credential used for pulling or pushing code
using the HTTPS protocol. Each developer needs to set a password only
once and can use it for all repositories.

- Keep your HTTPS password secure and change it periodically to avoid
security risks. If you forget the password, set a new HTTPS password.

(10 NOTE

By default, the HTTPS password is the Huawei Cloud login password. The password can be
synchronized in real time. You can also select Set new password to change the password.

Changing the HTTPS Password

Step 1

You need to set the initial password upon the first login. You can also change the
HTTPS password at any time. The procedure is as follows:

Log in to the CodeArts Repo service repository list page, click the alias in the
upper right corner, and choose This Account Settings > HTTPS Password. The
page is displayed.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 13

CodeArts Repo 3 Setting SSH Key or HTTPS Password for CodeArts
User Guide Repo Repository

‘:' 007 =~

SmES "
/.\
D e
B TRIEE
o) ®
C =a
fEEas “’Ddepjjs'] FrEEE
[+ BHE=

Alternatively, log in to the repository list page of CodeArts Repo and click the
1 SERTTRS P8I0 jeon to go to the SSH Key page.

Step 2 Choose Set new password to reset the password. (If you have set an HTTPS
password and are using it, click Change.)

HTTPS Password

O Use Huawei Cloud login password Set new password

_-aQQu'.I.'Cl'l" sk
e |

Step 3 Enter the new password and email verification code, select | have read and agree
to the Privacy Statement and CodeArtsService Statement, and click OK. A
message is displayed, indicating that the operation is successful.

Step 4 After the password is reset, you need to regenerate the repository credential
locally and check the IP address whitelist. Otherwise, you cannot interact with

the CodeArts Repo repository.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 14

CodeArts Repo
User Guide

3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

Delete the local credential (for example, on Windows, choose Control Panel >
User Accounts > Manage Windows Credentials > Generic Credentials), use
HTTPS to clone the cloud repository again, and enter the correct account and

password in the dialog box that is displayed.

(11 NOTE

If SSL certificate problem is displayed, run the following command on Git client:
git config --global http.sslVerify false

--—-End

(10 NOTE

e You can click Use Huawei Cloud Account Password to reset the password and
customize a password at any time.

e The maximum size of a package that can be pushed at a time using HTTPS is 200 MB. If
the size is greater than 200 MB, use the SSH mode.

Verifying Whether an HTTPS Password Takes Effect

After setting an HTTPS password, you can perform HTTPS-clone on the repository
that you have the access permission on the client. A dialog box is displayed, asking
you to enter the account and password. If the clone is successful, the password is
configured.

(11 NOTE

You can also use the HTTPS protocol to set password-free code submission. For details, see
Setting Password-Free Access via HTTPS

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 15

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Migrating Data to CodeArts Repo

4.1 Overview

4.2 Migrating an SVN Repository to CodeArts Repo

4.3 Importing a Remote Git Repository to CodeArts Repo
4.4 Uploading Local Code to CodeArts Repo

4.1 Overview

This section describes how to migrate your repository to CodeArts Repo. Select one
of the following migration solutions based on your repository storage mode:

e Migrating an SVN Repository to CodeArts Repo
e 4.3 Importing a Remote Git Repository to CodeArts Repo
e 4.4 Uploading Local Code to CodeArts Repo

4.2 Migrating an SVN Repository to CodeArts Repo

This section uses a code repository with the standard SVN layout as an example to
describe how to migrate an existing SVN repository to CodeArts Repo. The
following figure shows the directory structure of the repository.
[-- .svn
|-- KotlinGallery
|- trunk Main Development Directory
|--app
|--gradle
[-=..
|-- branches Branch Development Directory
|--rl.1 hotfix
|--app
[--gradle

|-- tags Tag Archive Directory(The modification is not allowed)
[--r1.0
|--app
[--gradle

[--rl.1

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 16

CodeArts Repo
User Guide

4 Migrating Data to CodeArts Repo

There are two methods of migrating the existing SVN code. Both methods
effectively migrate the SVN code and operation records. The differences of the two
methods are as follows. In the first method, the branches and tags folders of the
SVN repository are mapped to Git branches and tags during the migration. This
facilitates subsequent development on CodeArts Repo, but the migration process is
complex. The second method is simple because the branch and tag folders of the
SVN repository are migrated without mapping, but it is inconvenient for
subsequent development. You can select a method as required.

Migration Method 1: Import on the Git Bash Client: applicable to the
scenarios where only part of code is stored in the SVN during project
development

Migration Method 2: Online Import Using HTTP: applicable to the scenarios
where the complete project code is stored in the SVN when the project is
complete

Migration Method 1: Import on the Git Bash Client

Step 1 Obtain committer information of the SVN repository.

1.

Use TortoiseSVN to download the repository to be migrated to the local
computer.

Go to the local SVN repository (KotlinGallery in this example) and run the

following command on the Git Bash client:
svn log --xml | grep "A<author" | sort -u | \awk -F '<author>' {print $2}' | awk -F '</author>" '{print
$1} > userinfo.txt

The userinfo.txt file is generated in the directory.

> This PC » DataDisk (D) » workspace » SVN » DevOpsOnDevCloud » KotlinGallery

-

@ | branches

& tags
trunk

@/ userinfo.bxt

ray
m

Open the userinfo.txt file. You can view the information about all committers
who have committed code to the repository in the file.

Git uses an email address to identify a committer. To better map the SVN
repository information to a Git repository, create a mapping between the SVN
and Git usernames.

Modify the userinfo.txt file. Each line should be in the format of
svn_committer = git committer_nickname <email_address>.

El userinfo. txtEd

1 admin = =xiehao <=xiehao @ . Com>
2 fanghua = fanghua <fanghua @ . Com>
3 Xiayan = xiayan «<xXiayan @ . COm>

Step 2 Create a local Git repository.

1.

Create an empty Git repository directory on the local computer, and copy
the userinfo.txt file obtained in Step 1 to the directory.

Start the Git Bash client in the directory and run the following command to
clone a Git repository:

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 17

CodeArts Repo
User Guide

4 Migrating Data to CodeArts Repo

git svn clone <svn_repository_address>--no-metadata --authors-file=userinfo.txt --trunk=trunk --
tags=tags --branches=branches

The following table lists parameters in the command. Set the parameters as
required.

Parameter Description

--no-metadata Prevents the Git from exporting useless information
contained in the SVN.

--authors-file File that maps all SVN accounts to Git accounts

--trunk Main development project

--branches Branch projects

--tags Tags

After the command is executed, a Git repository is generated locally.

» This pC » DataDisk (Iv) » workspace » Git » admin

Fas

% KotlinGallery

020
020

M2 2
‘ ‘

| userinfotut KB
Run the following commands to go to the KotlinGallery folder and verify the

current Git repository branch structure:
cd KotlinGallery
git branch -a

/Git/admin
% od KotlinGallery/

/Git admin/KotTinGallery (
$/git branch -a

As shown in the preceding figure, all SVN directory structures are successfully
migrated in the form of Git branches.

Step 3 Correct local branches.

In Step 2, the git svn clone command is used to save the tags folder in the SVN
repository as a branch, which does not comply with the Git usage specifications.
Therefore, before uploading tags to CodeArts Repo, adjust the local branches to

comply with the Git usage specifications.

1.

Go to the local Git repository and run the following commands on the Git

Bash client to change the tags branch to appropriate Git tags:
cp -Rf .git/refs/remotes/origin/tags/* .git/refs/tags/

rm -Rf .git/refs/remotes/origin/tags

git branch -a

git tag

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 18

CodeArts Repo
User Guide

4 Migrating Data to CodeArts Repo

t/admin/KotTinGa

Run the following commands to change the remaining indexes under refs/

remotes to local branches:

cp -Rf .git/refs/remotes/origin/* .git/refs/heads/
rm -Rf .git/refs/remotes/origin

git branch -a

git tag

i cp -Rf .git/refs/

fadmin/Kot
i rm -Rf .git/refs;

‘admin/Kot
t git branch -a

rl.1_hotfix
trunk

§ g1t tag
rl.0
rl.1

Run the following commands to merge the trunk branch into the master

branch and delete the trunk branch:
git merge trunk

git branch -d trunk

git branch -a

git tag

§ git bran
Deleted br

§ git branch -a

rl.1_hotfix

Step 4 Upload the local code.

1.

Set the SSH key of the repository by referring to 3.1 Overview.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

19

CodeArts Repo
User Guide

4 Migrating Data to CodeArts Repo

2. Run the following commands to associate the local repository with the
CodeArts Repo repository and push the master branch to CodeArts Repo:
git remote add origin <CodeArts Repo_repository_address>
git push --set-upstream origin master
After the push is successful, log in to CodeArts Repo and view the master
branch of the repository after clicking the Code and Branches tabs.

3. Run the following command to push other branches from the local computer

to CodeArts Repo:
git push origin --all

After the push is successful, the r1.1_hotfix branch is added to the repository

after clicking the Code and Branches tabs.

4. Run the following command to push tags from the local computer to

CodeArts Repo:
git push origin --tags

After the push is successful, click the Code and Branches tabs and view tags

r1.0 and r1.1 added to CodeArts Repo.
----End

Migration Method 2: Online Import Using HTTP

Ensure that your SVN server supports HTTP or HTTPS access. You can enter
http(s)://SVN server address/Name of the repository to be accessed in any
browser for verification.

Step 1 On the CodeArts Repo list page, click - next to New Repository and choose
Import Repository from the drop-down list.

Step 2 Enter the source repository URL, enter the SVN username and password, select |

have read and agree to the Privacy Statement and CodeArts Service
Statement, and click Next.

Enter the name of the repository to be created, configure permissions, and click
OK.

Step 3 After the repository is created, click the repository name to view details.

--—-End

4.3 Importing a Remote Git Repository to CodeArts
Repo

Background
CodeArts Repo allows you to import Git-based remote repositories.

Git-based remote repositories are cloud repositories hosted in storage services
such as GitHub.
Method 1: Online Import

You can directly import your remote repository to CodeArts Repo online. The
import speed will be affected by network conditions of the source repository.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

20

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

1. On the CodeArts Repo homepage, click - next to New Repository and
select Import Repository from the drop-down list. The Import Repository
page is displayed.

2. Enter information in the Source Repository URL field. If the source repository
is open-source (public repository), select Username and password not
required. If the source repository is private, select Username and password
required.

3. Click Next. On the Create Repository page, enter the basic information about
the repository.

4. Click OK to import the repository. The repository list page is displayed.
a Set Basic Information

Set Basic Information

Source Repository URL
Git -

— 30min timeout of SVN of repository importing. If timesout, using clone/push client is recommended.
- Git LFS objects are not included in the imported content

- The repository domain must be connected to the service node
Source Repository Access

© Usemame and password not required

Username and password required

For details, see 5.4 Importing an External Repository.

Method 2: Cloning the Git Repository to the Local Computer and Associating
and Pushing It to CodeArts Repo

If you cannot import a repository online due to network issues, use this method.
Using this method, you can clone a remote repository to the local computer, and
then associate and push it to CodeArts Repo.

Step 1 Install and configure the Git client.
Step 2 Download a bare repository using the source repository address.
The following uses GitHub as an example:

1. Open a browser and enter the address of the GitHub code repository.

2. Click Code on the right, click the HTTPS tab, and click E on the right.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 21

CodeArts Repo
User Guide 4 Migrating Data to CodeArts Repo

Go to file m

Local Codespaces

[Clone @

HTTPS GitHub CLI

[X) Open with GitHub Desktop

[7) Download ZIP

3. Open the Git Bash client on the local PC, run the following command to clone
the repository to the local PC, and run the cd command to go to the

repository directory:
git clone --bare <source_repository_address>

Step 3 Associate the local repository with CodeArts Repo and push it to CodeArts Repo.

1. On the CodeArts Repo homepage, click New Repository. In the Permissions
area, do not select Allow generation of a README file.

2. Go to the repository details page created in 1, click Clone/Download, click

the Clone with SSH or Clone with HTTPS tab as required, and click g to
obtain the repository address.

In this example, the HTTPS address is used.

Follows 0 ¥ Fark 0 & Clone / Download

Clone with S3H | Clone with HTTPS

© Go to|HTTPS Password|to view and set your usermname

https &

g

A zip £ targz A tarbz2 - tar

3. In the root directory of local source code, open the Git Bash client and run the

following command to push the local repository to the new repository:
git push --mirror <new_repository_address>

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 22

CodeArts Repo
User Guide

4 Migrating Data to CodeArts Repo

When the command is executed, the system prompts you to enter the HTTPS
account and password of the CodeArts Repo repository. Enter the correct
account and password. (For details about how to obtain an HTTP account and
password, see Changing the HTTPS Password.)

If your source repository has branches and tags, they will also be pushed to
CodeArts Repo.

--—-End

After the push is successful, check whether the migration is complete in CodeArts
Repo. (For details about how to view a CodeArts Repo repository, see 8.1 Viewing
the Repository List.)

4.4 Uploading Local Code to CodeArts Repo

Background

CodeArts Repo allows you to perform Git initialization on local code and upload
the code to a CodeArts Repo repository.

Procedure

Step 1 Create an empty repository in CodeArts Repo.

Do not configure Programming Language of .gitignore.
Deselect Allow generation of a README file.

Step 2 Prepare the source code to be uploaded on the local computer.

If the source code is from the SVN server, refer to Migrating an SVN
Repository.

If the source code is not managed by any version control systems, run the
following Git command in the root directory of the source code (Git Bash is
used as an example):

a. Initialize a Git repository on the local computer:
git init

t imt

Initialized empty Git repository in C:/Us Jesktop/GIT /task/.git/

b. Add the code files to the local repository:
git add *

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

23

CodeArts Repo
User Guide

4 Migrating Data to CodeArts Repo

c. Create an initial commit:
git commit -m "init commit"

Step 3 Set a remote server address for the local repository.

If the Git repository is cloned from other systems, run the following command

to add a new remote repository:

git remote add new git@** ***com:testtransfer/Repoi.git ~ # (replace the part after new with the
repository address)

The repository address is displayed on the repository details page. The
following figure shows how to obtain the repository address.

Follows 0 ¥ Fork 0 & Clone / Download

Clone with SSH| Clone with HTTPS

O co 1otc- add your SSH Key.

4 Zip 4 targz & tarbz? 4 tar

If the Git repository is just initialized, run the following command to add a

remote repository named origin.
git remote add origin git@***.***.com:testtransfer/Repo1.git # (replace the part after origin with the

repository address)

Step 4 Push all code to CodeArts Repo.

git push new master # (when the Git repository is cloned from other systems)
git push origin master # (when the Git repository is just initialized)

--—-End

(11 NOTE

Basic Git knowledge is required for the preceding operations. If you have any questions
during the operation, see the Git website or contact technical support.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 24

https://git-scm.com

CodeArts Repo
User Guide

5 Creating a CodeArts Repo Repository

Creating a CodeArts Repo Repository

5.1 Overview

5.2 Creating an Empty Repository

5.3 Creating a Repository Using a Template

5.4 Importing an External Repository

5.5 Forking a Repository

5.1 Overview

Currently, CodeArts Repo provides the following ways to create a repository.

5.2 Creating an Empty Repository: You can create a local repository and
synchronize it to CodeArts Repo.

5.3 Creating a Repository Using a Template: You can create a repository
using a CodeArts Repo template when there is no local repository.

5.4 Importing an External Repository: You can import a cloud repository to
CodeArts Repo or import a CodeArts Repo repository from a region to another
region (see 9.2.5 Repository Backup). The imported repository is independent
of the source repository.

- Scenario 1: Migrate Gitee and GitHub repositories and projects to
CodeArts Repo.

- Scenario 2: Migrate CodeArts projects from a region to other regions.

Forking a Repository: You can fork a CodeArts Repo repository, make
changes to the fork, and merge the changes to the source repository.

- Scenario 1: Carry out new projects based on historical projects without
damaging the repository structure of the historical projects.

- Scenario 2: Share projects of your organization with others.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 25

CodeArts Repo
User Guide

5 Creating a CodeArts Repo Repository

NOTICE

e The capacity of a single repository cannot exceed 2 GB (including LFS usage). If
the capacity exceeds 2 GB, the repository cannot be used properly and cannot
be expanded.

e When the capacity of a repository exceeds the upper limit, the repository is
frozen. In this case, you are advised to delete the repository, control the
capacity locally, and push the repository again.

Common Repository Settings

9.2.1 Repositories

9.3.3 Commit Rules

9.3.4 Merge Requests
9.3.1 Protected Branches
9.5.2 IP Address Whitelists

More settings

5.2 Creating an Empty Repository

You can create an empty repository and synchronize a local repository to CodeArts
Repo. To create an empty repository on the CodeArts Repo console, perform the
following steps:

Step 1 Access the repository list page.

Step 2 Click New Repository. On the page that is displayed, enter basic repository
information.

Table 5-1 Parameters for creating an empty repository

Parameter | Ma | Remarks
nda
tory
Repository | Yes | The name must start with a letter, digit, or underscore (_)
Name and can contain periods (.) and hyphens (-), but cannot end
with .git, .atom, or period (.). The name can contain a
maximum of 200 characters.
Project Yes | o A repository must be associated with a project.

e [f the account does not have a project, click Create
Project in the drop-down list box to create a basic, a
Scrum or an IPD-Self-Operated Software/Cloud
Service project.

NOTE

If you create a repository in a project, the project is selected for

Project by default, and the Project parameter is hidden on the
repository creation page.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 26

CodeArts Repo
User Guide

5 Creating a CodeArts Repo Repository

Parameter

Ma
nda
tory

Remarks

Descriptio
n

No

Enter a description for your repository. The description can
contain a maximum of 2000 characters.

Programmi
ng
Language
of .gitignor
e

No

The .gitignore file is generated based on your selection. (For
details about gitignore, see Documentation.)

Permission
S

No

The options are as follows:

e Make all project developers automatic repository
members
If you select this option, the project developer is
automatically added as a repository member. By default,
the project manager is a repository member.

e Allow generation of a README file
You can edit the README file to record information such
as the project architecture and compilation purpose,
which is similar to a comment on the entire repository.

e Create a code check task automatically (for free).
After the repository is created, you can view the code
check task of the repository in the CodeArts Check task
list after switching to the region where the repository is
located.

Visibility

Yes

The options are as follows:

e Private
The repository is visible only to repository members.
Repository members can access the repository or commit
code.

e Public read-only
The repository is open and read-only to all guests, but is
not displayed in their repository list or search results. You
can select an open-source license as the remarks.

Step 3 Click OK to create the repository. The repository list page is displayed.

--—-End

Associating with an Existing Directory or Repository

If you do not generate a README file when creating a common repository, you
can click the Code tab, click Create a README file or associate the repository
with an existing directory or repository. The procedure is as follows:

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

27

https://git-scm.com/docs/gitignore

CodeArts Repo

User Guide 5 Creating a CodeArts Repo Repository
repo_1 (R History
No data available.
or associate the repository with an existing directory or repository.
Associate This Repository with Existing Directories or Other Repositories
Run the "DHD‘M?’\(J commands on the Git client. Learn how to install the Git client.
Download 3?112[macOS "
Before clening and pushing a repesitory, add an SSH key first. Learn how fo add an SSH key
Set a global usemame and email address for the Git client.
g\l :ormg --g\cna\ username "\-‘DW username”
g\l :ormg --g\cna\ useremail “ycur Email"
Clone a repesitory locally and publish the README file
git clone https:
cd repa_1
echo "# repo_1" > README md
git add README.md
g\l commit -m "add README"
g\l UUSH -u origin master
Prerequisites
e You need to run following commands on the Git client. Install the Git client
and configure the Git global username and user email address. For details,
see 2 Git Installation and Configuration.
e Set the SSH key. For details, see 3.2 SSH Keys.
Procedure
L] NOTE
The following commands have been automatically generated in the new repository. You can
copy them on the Code tab page of the repository.
Step 1 Clone the repository on the local host and push the new README file.

Step 2 Associate an existing code directory with the repository.

git clone HTTP_download_address

cd taskecho "# Repository_name" > README.md
git add README.md

git commit -m "add README"

git push -u origin master

cd <Your directory path>

mv README.md README-backup.md

git init

git remote add origin HTTP_download _address
git pull origin master

git add --all

git commit -m "Initial commit"

git push -u origin master

Step 3 Associate with an existing Git repository.

cd <Your Git repository path>

git remote remove origin > /dev/null 2>&1

git remote add origin HTTP_download _address
git push -u origin --all -f

git push -u origin --tags -f

--—-End

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

28

CodeArts Repo
User Guide

5 Creating a CodeArts Repo Repository

5.3 Creating a Repository Using a Template

You can create a repository using a CodeArts Repo template on the CodeArts Repo

console.

Procedure

Step 1 Access the repository list page.

Step 2 Click - next to New Repository and select Template Repository from the drop-
down list. The Select Template page is displayed.

Step 3 On the Select Template page, enter a keyword for fuzzy search and select a

template as required.

Step 4 Click Next. On the Basic Information page, enter basic repository information.

Table 5-2 Parameters for creating a repository using a template

Parameter

Man
dato

ry

Remarks

Repository
Name

Yes

The name must start with a letter, digit, or underscore (_)
and can contain periods (.) and hyphens (-), but cannot
end with .git, .atom, or period (.). Min. 2 characters; Max.
200 characters.

Project

Yes

e A repository must be associated with a project.

e |f the account does not have a project, click Create
Project in the drop-down list box to create a basic, a
Scrum or an IPD-Self-Operated Software/Cloud
Service project.

NOTE

If you create a repository in a project, the project is selected for

Project by default, and the Project parameter is hidden on the
repository creation page.

Descriptio
n

No

Enter a description for your repository. The description can
contain a maximum of 2000 characters.

Permission
S

No

o Make all project developers automatic repository
members
If you select this option, the project developer is
automatically added as a repository member. By default,
the project manager is a repository member.

e Create a code check task automatically (for free).
After the repository is created, you can view the code
check task of the repository in the code check task list

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 29

CodeArts Repo

User Guide 5 Creating a CodeArts Repo Repository
Parameter | Man | Remarks
dato
ry
Visibility Yes The options are as follows:
e Private
The repository is visible only to repository members.
Repository members can access the repository or
commit code.
e Public
The repository is open and read-only to all guests, but is
not displayed in their repository list or search results.
You can select an open-source license as the remarks.
Step 5 Click OK to create the repository.

--—-End

(11 NOTE

When you create a repository by template, the repository type of the selected template will
be automatically configured for the repository.

The repository created using the template contains the repository file structure preset in the
template.

Automatically Creating a Pipeline

Step 1

Step 2

Step 3

Step 4

A pipeline can be automatically created when a repository is created using a
template. Note that the host used in CodeArts Deploy must be changed to the
actual environment so that the pipeline can be successfully executed.

On CodeArts Repo, click - next to New Repository and select Template
Repository.

On the Select Template page, set Automated Pipeline Creation to Yes in the
navigation pane to display templates that can be used to automatically create a
pipeline.

Automated Pipeline Creation
O Al
Yes

Mo

Select a template as required, click Next, enter basic repository information, and
click OK.

After the repository is created, you can view the pipeline that is automatically
created on the pipeline list page displayed.

--—-End

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 30

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

5.4 Importing an External Repository

You can import a cloud repository to CodeArts Repo or import a CodeArts Repo
repository from a region to another region (see 9.2.5 Repository Backup). The
imported repository is independent of the source repository.

To import an external repository on the CodeArts Repo console, perform the
following steps:

Step 1 Access the repository list page.

Step 2 Click - next to New Repository and select Import Repository from the drop-
down list.

NOTICE

e An external repository can be a Git remote repository (HTTPS) or SVN
repository.

e The source repository port can be 80, 443, or greater than 1024.

e Currently, GitHub, Gitee, GitLab, and SVN source repositories are supported. If
the import using other types of source repositories fails, contact technical
support to check the source server whitelist.

Step 3 Enter the source repository path, and enter the username and password for
accessing the source repository. (This parameter is not required for open-source
repositories.)

o Set Basic Information
Set Basic Information
Source Repository URL
Git -

—30min timeout of SVN of repositery importing. If timesout, using clone/push client is recommended.
- Git LFS objects are not included in the imported content

- The repository domain must be connected to the service node
Source Repository Access

© Usemame and password not required

Usemame and password required

Step 4 Click Next. On the Create Repository page, enter the basic information about the
repository.

Table 5-3 Parameter description

Parameter | Ma | Remarks

nda
tory
Repository | Yes | The name must start with a letter, digit, or underscore (_)
Name and can contain periods (.) and hyphens (-), but cannot end
with .git, .atom. The name can contain a maximum of 200
characters.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 31

CodeArts Repo
User Guide

5 Creating a CodeArts Repo Repository

Parameter

Ma
nda
tory

Remarks

Descriptio
n

No

Enter a description for your repository. The description can
contain a maximum of 2,000 characters.

Permission
S

No

e Make all project developers automatic repository

members

If you select this option, the project developer is
automatically added as a repository member. By default,
the project manager is a repository member.

Create a code check task automatically (for free).
After the repository is created, you can view the code
check task of the repository in the check task list

Visibility

Yes

The options are as follows:
e Private

The repository is visible only to repository members.
Repository members can access the repository or commit
code.

Public read-only
The repository is open and read-only to all visitors. You
can select an open-source license as the remarks.

Branch

Yes

You can choose to synchronize the default branch or all
branches of the source repository.

Schedule

No

Select Schedule sync into repo.
e The default branch of the source repository is

automatically imported to the default branch of the new
repository every day.

The repository becomes a read-only image repository and
cannot be written. In addition, only the branches of the
third-party repository corresponding to the default
branch of the current repository are synchronized.

Step 5 Click OK to import the repository. The repository list page is displayed.

--—-End

(11 NOTE

e The timeout interval for importing a repository is 30 minutes. If the import times out,
use the clone/push function on the client.

e The Git LFS object is not imported.
e The repository domain must be connected to the service node.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 32

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

5.5 Forking a Repository

Application Scenarios

You can fork a CodeArts Repo repository based on an image repository, make
changes to the fork, and merge the changes to the source repository. Before
changes are merged, the changes of the fork or the source repository will not
affect each other.

As shown in the following figure, fork is applicable to the development scenario
where a large-scale project contains multiple sub-projects. The complex
development process occurs only in image repositories and the project repository
(source repository) is not affected. Only new features that are completed can be
merged to the project repository. Fork can be considered as a team collaboration
mode.

Project version repository
(source)

Fork Merge request

Project maintainer

—
Sub-version & feature repositories
{image repositories)

Git push

Git chone

Git pull

Project participant Project participant Project participant

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 33

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Differences Between Forking a Repository and Importing an External
Repository

The two modes are both repository replication. The main difference lies in the
association between the source repository and the copied repository. The details
are as follows:

e Fork

- Forks are used to copy repositories on CodeArts Repo.

- A fork generates a repository copy based on the current version of the
source repository. You can apply for merging changes made on the fork
to the source repository (cross-repository branch merge), but you cannot
pull updates from the resource repository to the fork.

e Import

- You can import repositories of other version management platforms
(mainly Git- and SVN-based hosting platforms) or your own repository to
CodeArts Repo.

- An import also generates a repository copy based on the current version
of the source repository. The difference is that you can pull the default
branch of the source repository to the repository copy at any time to
obtain the latest version, but you cannot apply for merging changes
made on the repository copy to the source repository.

Forking a Repository
Step 1 Access the repository list page.
Step 2 Click a repository name to go to the target repository.

Step 3 Click Fork in the upper right corner of the page. In the Fork Repository dialog box
that is displayed, select the target project, enter the repository name, and select
Allow project members to access the repository .

@ Create Build Task ¥r Follows 1] % Fork 1]

B Associated Work Items 177 y Stati i= Activiti 2 Members

L} Settings
Expand instructions

Items Commit Message

Fork Repository

= Project

B

Allow project members to access the repository

Step 4 Click OK to fork the repository.

--—-End

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 34

CodeArts Repo

User Guide 5 Creating a CodeArts Repo Repository

Viewing the List of Forked Repositories

Step 1 Access the repository list page.

Step 2 Click the source repository name.

Step 3 Click Fork in the upper right corner of the page to view the list of forked
repositories, as shown in the following figure.

You can click the name of a forked repository to access the repository.

- Tepo

OCeaeBuaTsk Grolows 0 | YFo
"™ Repository ID: 2165461

BHome <> Code JiMergeRequests 0 (3Reviews [Associated Work ltems

7 Repository Statistics = Activities & Members £ Settings

124.36 MB 1 1 0 1 omMB
DFies Co # Branch ® S
Readme
wwwwwwwww
Apr 11,2023 Apr 11,2023
w1 @

--—-End

Merging Changes of a Fork to the Source Repository
Step 1 Access the repository list page.
Step 2 Click the name of the forked repository.
Step 3 Click the Merge Requests tab.

[EHome «>Code | J)MergeRequests 0 | (ZReviews [J Associated Workltems 1] Repository Statistics = Activities & Members 3t Settings
a

Open 0
Merged
Closed
L]
Al 0
1y
Filter ‘
My requests = Merge pending é
Review pending Approve pending

Step 4 Click New. The Create Merge Request page is displayed.
Source Branch is the one that requests merging.

Target Branch is the one that merges content.

Create Merge Request
Select two different branches for update or creation

Source branch Target Branch

o testirepo - n @ | undefinedirepot

¥ Dev ¥ master

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 35

CodeArts Repo
User Guide 5 Creating a CodeArts Repo Repository

Step 5 Click Next. The page for creating a merge request is displayed. The subsequent
operation process is the same as that of creating a merge request in the
repository. For details, see Creating a Merge Request.

----End
L] NOTE
A cross-repository MR belongs to the source repository and can be viewed only on the

Merge Requests tab of the source repository. Therefore, reviewers, approvers, and mergers
must be members of the source repository.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 36

CodeArts Repo
User Guide 6 Associating the CodeArts Repo Repository

Associating the CodeArts Repo
Repository

Before using CodeArts Repo, initialize the local project files to a Git repository and
associate it with a CodeArts Repo repository.

Prerequisites
You have installed the Git client and bound the SSH key of the Git client to
CodeArts Repo.

Procedure

Step 1 Create a CodeArts Repo repository.

If you select gitignore based on your local code library, some non-development
files will be ignored and will not be managed in Git.

Step 2 |Initialize the local repository to a Git repository.
Open the Git Bash client in your repository and run the following command:
git init

The following figure shows that the initialization is successful. The current folder is
the local Git repository.

int

Initialized empty Gi

Step 3 Bind the CodeArts Repo repository.

Go to the CodeArts Repo repository and obtain the repository address.

2. Run the remote command to bind the local repository to the cloud repository.
git remote add <repository_alias> <repository_address>

Example:
git remote add origin git@*****/java-remote.git # Change the address to that of your repository.

By default, origin is used as the repository alias when you clone a remote
repository to the local computer. You can change the alias.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 37

CodeArts Repo
User Guide

6 Associating the CodeArts Repo Repository

Step 4

Step 5

Step 6

Step 7

Step 8

If the system displays a message indicating that the repository alias already
exists, use another one.

If no command output is displayed, the binding is successful.
Pull the master branch of the CodeArts Repo repository to the local repository.
This step is performed to avoid conflicts.
git fetch origin master # Change origin to your repository alias.
Commit local code files to the master branch.

Run the following commands:

git add .
git commit -m "<your_commit_message>"

The following figure shows a successful execution.

t gt oadd .

Bind the local master branch to the master branch of CodeArts Repo repository.

git branch --set-upstream-to=origin/master master # Change origin to your repository alias.

If the following information is displayed, the binding is successful.

Merge the files in the CodeArts Repo repository and local repository and store
them locally.

git pull --rebase origin master # Change origin to your repository alias.

The following figure is displayed, indicating that the merged repository has been
placed in the working directory and repository.

~/Desktop/11u'Code/Java

$ git pull

From #d PN e stD0001 M ava-remote
* branct
successtully reb

Push the local repository to overwrite the CodeArts Repo repository.
Run the push command because the repositories have been bound:
git push

After the operation is successful, pull the repository to verify that the version of
the CodeArts Repo repository is the same as that of the local repository.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 38

CodeArts Repo
User Guide 6 Associating the CodeArts Repo Repository

5 it push
Enumeratin
Counting 10

1 UsIing up

s, done.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 39

CodeArts Repo 7 Cloning or Downloading Code from CodeArts Repo
User Guide to a Local PC

Cloning or Downloading Code from
CodeArts Repo to a Local PC

7.1 Overview
7.2 Using SSH to Clone Code from CodeArts Repo to a Local PC
7.3 Using HTTPS to Clone Code from CodeArts Repo to a Local Computer

7.4 Downloading a Code Package on a Browser

7.1 Overview

In addition to 8.4.1 Managing Files, the Git-based CodeArts Repo also allows you
to download repository files to a local PC.

There are three methods of cloning or downloading a repository to a local PC for
the first time:

e 7.2 Using SSH to Clone Code from CodeArts Repo to a Local PC
e 7.3 Using HTTPS to Clone Code from CodeArts Repo to a Local Computer
e 7.4 Downloading a Code Package on a Browser

7.2 Using SSH to Clone Code from CodeArts Repo to a
Local PC

Prerequisites

Your network can access CodeArts Repo. For details, see Network Connectivity
Verification.

Cloning Code on the Git Bash Client Using SSH

This section describes how to use the Git Bash client to clone a repository of
CodeArts Repo to a local PC.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 40

CodeArts Repo 7 Cloning or Downloading Code from CodeArts Repo
User Guide to a Local PC

Step 1 Download and install the Git Bash client.
Step 2 Configure an SSH key.
Step 3 Obtain the repository address. (If there is no repository, create one.)

On the repository details page, click Clone/Download to obtain the SSH address.
You can use this address to connect to CodeArts Repo from the local PC.

* Follows 1] ¥ Fork 0 &, Clone / Download

Clone with SSH | Clone with HTTPS

0 co too add your SSH Key. X

4 zip 4 targz 4 tarbz?2 = tar

(1 NOTE

If no SSH key is available, click SSH Keys to configure one. For details, see SSH key.
You can obtain the SSH address from URL in the repository list of CodeArts Repo.

Step 4 Open the Git Bash client.

Create a folder on the local PC to store the code repository. Right-click the blank
area in the folder and open the Git Bash client.

(11 NOTE

The repository is automatically initialized during clone. You do not need to run the init
command.

Step 5 Run the following command to clone code from CodeArts Repo:

git clone <repository _address>
repository_address in the command is the SSH address obtained in Step 3.

If you clone the repository for the first time, the system asks you whether to trust
the remote repository. Enter yes.

After the command is executed, a folder with the same name as CodeArts Repo is
displayed, and a hidden .git folder exists in the folder, indicating that the
repository is cloned.

Step 6 Run the following command to go to the repository directory:

cd <repository_name>

You will be taken to the master branch by default.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 41

CodeArts Repo 7 Cloning or Downloading Code from CodeArts Repo
User Guide to a Local PC

--—-End

(11 NOTE

If the git clone command fails to be executed, locate the fault as follows:
e Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
Ssh _VT git@**********-com

If the returned information contains Could not resolve hostname code********** com:
Name or service not known as shown in the following figure, your network is
restricted and you cannot access CodeArts Repo. In this case, contact your local network
administrator.

e Check the SSH key. If necessary, regenerate a key and configure it on the CodeArts
Repo console.

e Only PCs that enabled the IP address whitelist can be cloned on the Git client.

Cloning Code on the TortoiseGit Client Using SSH

This section describes how to use the TortoiseGit client to clone a repository of
CodeArts Repo to a local PC.

Step 1 Download and install the TortoiseGit client.
Step 2 Obtain the repository address. (If there is no repository, create one.)

On the repository details page, click Clone/Download to obtain the SSH address.
You can use this address to connect to CodeArts Repo from the local PC.

(11 NOTE

You can obtain the SSH address from URL in the repository list of CodeArts Repo.

Step 3 Go to the local directory where you want to clone the repository, and choose Git
Clone... from the right-click menu.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 42

CodeArts Repo
User Guide

to a Local

7 Cloning or Downloading Code from CodeArts Repo

PC

View b
Sort by >
Group by > i
Refresh

Custornize this folder...

Paste !
Paste shortcut
Undo Rename Ctrl+Z
Git GUI Here

Git Bash Here

Give access to e

Git Clane...

[Git Create repository here...
2 TortoiseGit b

Mew >

Properties

Step 4 In the dialog box displayed, paste the copied repository address to the URL field,
select Load Putty Key, choose the private key file, and click OK.

" Git clone - TortoiseGit

Clone Existing Repository |

URL: | v | Browse... |w
Directory: ‘ ‘ Browse...
Coepth 1 [Recursive [Jclone into Bare Repa [INo Checkout
[Branch [Origin Narne CJLFs
Load Putty Key | v|
From SVN Repository

] From SVM Repository

Trunk: trunk Tags: tags Branch: branches

From: 0 Username:

Gncel |t

Step 5 Click OK to start cloning the repository. If you clone the repository for the first
time, the TortoiseGit client asks you whether to trust the remote repository. Click

Yes.

Step 6 The cloning duration is affected by the repository size. The following figure shows

the cloning process.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

43

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

&' Di\gitTest\yilia_test - Git Cormmand Progress - TortoiseGit — d x

.

e -

[master (rooct-commit) c63cl8@] welcome~!

Success (188 ms @ 3/5/2020 4:04:51 PM)

E Push... |v; Abort

--—-End

Cloning a Repository on Linux or macOS Using SSH

After the environment is configured (see 2.4 Installing Git for Linux or 2.5
Installing Git for macOS), the clone operations of the Git client on Linux or
macOS are the same as those in Cloning Code on the Git Bash Client Using SSH.

7.3 Using HTTPS to Clone Code from CodeArts Repo to
a Local Computer

Cloning Code on the Git Bash Client Using HTTPS

Step 1
Step 2
Step 3

This section describes how to use the Git Bash client to clone a repository of
CodeArts Repo to a local PC.

NOTICE

The maximum size of a package that can be pushed at a time using HTTPS is 200
MB. If the size is greater than 200 MB, use the SSH mode.

Federated users cannot be bound to email addresses and do not support the
HTTPS protocol.

Download and install the Git Bash client.
Configure an HTTPS password.

On the CodeArts Repo homepage, click the name of a repository. On the
repository details page displayed, click Clone/Download, click Clone with HTTPS,
and copy the repository address.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 44

https://support.huaweicloud.com/eu/usermanual-iam/iam_08_0001.html

CodeArts Repo 7 Cloning or Downloading Code from CodeArts Repo
User Guide to a Local PC

7 Follows 4] ¥ Fork 1] & Clone / Download

Clone with SSH Clone with HTTPS

0 co 10|HTTF'S Fassword |to view and set your

username and password. x

£ zZip A targz & tarbz2 A tar

(1 NOTE

If no HTTPS password is available, click HTTPS Password to configure one. For details, see
HTTPS Password.

You can obtain the HTTPS address from URL in the repository list of CodeArts Repo.

Step 4 Open Git Bash, navigate to the directory where you want to clone the repository,
and run the following command. For the first clone, enter the username (account
name) and HTTPS password.
git clone HTTP_download_address

Step 5 After the username (account name) and HTTPS password are entered, the
repository is cloned.

Step 6 Run the following command to go to the repository directory:

cd <repository_name>

You will be taken to the master branch by default.

--—-End

(11 NOTE

If the git clone command fails to be executed, locate the fault as follows:

e Check whether your network can access CodeArts Repo.
Run the following command on the Git client to test the network connectivity:
ssh -vT git@********** com

If the returned information contains Could not resolve hostname code********** com:
Name or service not known as shown in the following figure, your network is
restricted and you cannot access CodeArts Repo. In this case, contact your local network
administrator.

e Check the HTTPS password and reset the password if necessary.
e Only PCs that enabled the IP address whitelist can be cloned on the Git client.

Cloning Code on the TortoiseGit Client Using HTTPS

This section describes how to use the TortoiseGit client to clone a repository of
CodeArts Repo to a local PC.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 45

CodeArts Repo 7 Cloning or Downloading Code from CodeArts Repo
User Guide to a Local PC

Step 1 Download and install the TortoiseGit client.
Step 2 Configure an HTTPS password.
Step 3 On the CodeArts Repo homepage, click the name of a repository. On the

repository details page displayed, click Clone/Download, click Clone with HTTPS,

and copy the repository address.

7 Follows 1] ¥ Fork 1] & Clone f Download

Clone with SSH Clone with HTTPS

0 Go 10|HTTPS Password|to view and set your
username and password. b4

2 Zip A targz A tarbz2 A tar

(10 NOTE

If no HTTPS password is available, click HTTPS Password to configure one. For details, see

HTTPS Password.
You can obtain the HTTPS address from URL in the repository list of CodeArts Repo.

Step 4 Go to the directory where you want to clone the repository, and choose Git
Clone... from the right-click menu.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

46

CodeArts Repo
User Guide

7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

View b
Sort by p |
Group by > i
Refresh

Custornize this folder...

Paste !
Paste shortcut
Undo Rename Ctrl+Z
Git GUI Here

Git Bash Here

Give access to e

gl Git Clone...
[Git Create repository here...

2 TortoiseGit b

Mew > B

Properties

Step 5 In the dialog box displayed, paste the copied repository address to the URL field
and click OK.

&' Git clone - TortoiseGit X

Clone Existing Repository |

URL: | v | Browse... |w
Directory: ‘ ‘ Browse...
(pepth 1 [Recursive [clone into Bare Repa [Ino Checkout
[Branch [Origin Name CILFs
Load Putty Key | v|
From SVN Repository

1 From SVN Repository

Trunk: | trunk Tags: | f3os Branch: branches

From:] Username:

Grcel e

Step 6 If you clone a repository on TortoiseGit for the first time, enter the username and

HTTPS password as prompted.
Step 7 Wait until the clone is complete.
----End

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 47

CodeArts Repo 7 Cloning or Downloading Code from CodeArts Repo
User Guide to a Local PC

Cloning a Repository on Linux or macOS Using HTTPS

After the environment is configured (see 2.4 Installing Git for Linux or 2.5
Installing Git for macOS), the clone operations of the Git client on Linux or
macOS are the same as those in Cloning Code on the Git Bash Client Using
HTTPS.

7.4 Downloading a Code Package on a Browser

In addition to clone, CodeArts Repo also allows you to package and download the
code of a cloud repository to the local PC.

The downloaded code repository file is not associated with CodeArts Repo and
cannot be pushed back to CodeArts Repo.

The procedure is as follows:
Step 1 Access the repository list page.
Step 2 Go to your repository. (If there is no repository, create one.)

Step 3 Click Clone/Download. In the dialog box that is displayed, click the required code
package format.

[«

* Follows 0 % Fork 0 Clone / Download

Clone with S5H | Clone with HTTPS

0 co too add your SSH Key. X

4 zip A targz | L tarbz? = tar

--—-End

(11 NOTE

e If an IP address whitelist is set for the repository, only hosts with whitelisted IP
addresses can download the repository source code on the page. If no IP address
whitelist is set for the repository, all hosts can download the repository source code.

e Currently, the zip, tar.gz, tar.bz2, and tar package formats are supported.
e The master branch of CodeArts Repo will be downloaded.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 48

CodeArts Repo
User Guide 8 Using CodeArts Repo

Using CodeArts Repo

8.1 Viewing the Repository List

8.2 Viewing Repository Details

8.3 Viewing Repository Homepage

8.4 Managing Code Files

8.5 Managing MRs

8.6 Viewing Review Records of a Repository
8.7 Viewing Associated Work Items

8.8 Viewing Repository Statistics

8.9 Viewing Activities

8.10 Managing Repository Members

8.1 Viewing the Repository List

The repository list is the entry to CodeArts Repo. You can access the repository list
in the following ways:

You can create a repository, configure a repository, and obtain the repository
address.

e On your homepage, you can view repositories by category, such as Followed,
Participated, and Created. You can click the name of a target repository to
access the repository. You can view the combination requests of Created by
me, Merge pending, Review pending, and Approve pending. You can click
the name of a target merge request to access the combination request.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 49

CodeArts Repo
User Guide 8 Using CodeArts Repo

[c.] Repositories
. Followed
/& Participated
AL Created

[=] Task

Il Merge Requests

(10 NOTE

If you access a project of CodeArts Repo, this function is hidden.

e You can create a repository by New Repository, Template Repository or
Import Repository.

e Filter a Repository: You can select All repositories, Unlocked repositories, or
Locked repositories. For details about how to lock a repository, see
Repository Locking.

e You can click the = button to switch the following status of a repository.

e Associated work Items with CodeArts Req to improve efficiency.

e Manage members by synchronizing members from a project with one click or
adjust the permission of a member separately.

e Delete a repository by entering a repository name.
(10 NOTE

This operation cannot be canceled and deleted repositories cannot be restored. Please
double-check.

8.2 Viewing Repository Details

In the repository list, click a repository name to go to the repository details page.
CodeArts Repo provides abundant console operations.

Table 8-1 Description

Page Function Description

Reposito | Displays the repository capacity, commits number , branches

ry number , tags number , members number, LFS usage, creation time,
Homepa | creator, visible scope, repository status, README file, language, and
ge percentage of each language.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 50

CodeArts Repo
User Guide

8 Using CodeArts Repo

Page

Function Description

Code

e File list: You can create files, directories, and submodules, upload
files, modify files, modify blame, and view commit history.

e Submit: You can view commit records and repository network
diagrams.

e Branch: Branches can be managed on the console.
e Tag: Tags can be managed on the console.

e Comparison: You can view code changes between branches or
between tag versions by comparison.

Merge
Requests

Merge requests of branches can be managed on the console.

Reviews

You can view the review records of MRs and commits.

Associat
ed Work
Items

List of associated work items. You can associate CodeArts Req work
items with the repository code to improve efficiency.

Reposito

ry
Statistics

Visualized charts of repository commits, such as code contribution.

Activity

You can view the dynamic information about the repository.

Member
S

You can manage repository members, for example, synchronizing
members from the project by one click or changing the permissions
of a member.

Settings

Repository settings. Only the repository administrator and the
repository creator can view this tab page and configure settings.

In addition, the repository details page provides quick entries to the following

functions:

e Configure builds: Create a build task.
e Follow: Click to follow the repository. The followed repositories are pinned on

top.

e Fork: displays the number of forks of a repository. You can click this button to
create a fork.

e Clone/Download: You can obtain the SSH address and HTTPS address of a
repository or directly download the code package.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

51

CodeArts Repo
User Guide 8 Using CodeArts Repo

(11 NOTE

The following figures show the adaptation function of CodeArts Repo. When the length of
the repository page is greater than the window length, the repository tab page is moved to
the top after you scroll down. The position in the red box in the following figure is collapsed
S0 you can view repository information easily. After you scroll up, the page layout is
restored.

10317 / Repo / repo2 / Repostory Statstics

- Tepo2 & Create Build Task t Follows 0 N4 Cione / Download
= oo

ory ID 2185255

EHome > Code Merge Requests 0 (3 Reviews Associated Work Items £ Repository Statistics ‘= Activities 2 Members
9 pository.

Repo Used LFS Used Branches Tags Members Commits

0.1 ue 0e 1 “ o) 1

8.3 Viewing Repository Homepage
The Home tab page displays the basic information about a repository.

B Home <«>Code 1) Merge Requests 0 (& Reviews B Associated Work Items 7] Repository Statistics = Activities 2 Members ¥ Settings

0.1 MB 1 1 0 1 oMB © Info
[Files o Gommits # Branches © Tags & Members S LFs Usage Ju1 06, 2023 16:58:36 GMT+08:00
fosa
None Private
Normal

README.md M Readme
README.md

A Hello World applet built based on Maven
Build Template: Maven 9 Languages
Language: Java
Build Tool: Maven 3.5.3 and JDK 1.8

© Java 100
Build Command: mvn package -Dmaven test skip=true -U

Pipeline
« Whether Automatic Pipeline Creation Is Supported: Not supported

« Pipeline Structure

Table 8-2 Parameter description

Parameter Description
Files Capacity of the current repository
NOTE

e The capacity of a single repository cannot exceed 2 GB (including
LFS usage). If the capacity exceeds 2 GB, the repository cannot
be used properly and cannot be expanded.

e When the capacity of a repository exceeds the upper limit, the
repository is frozen. In this case, you are advised to delete the
repository, control the capacity locally, and push the repository
again.

Commits Displays the number of commits in the current repository.
You can click the icon to go to the Code tab page and view
commit details.

Branches Displays the number of branches in the current repository.
You can click the icon to go to the Code tab page and
manage branches.

Tags Displays the number of tags in the current repository. You
can click the icon to go to the Code tab page and manage
tags.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 52

CodeArts Repo
User Guide

8 Using CodeArts Repo

Parameter

Description

Members

Displays the number of members in the current repository.
You can click the icon to go to the Members tab page and
manage members.

LFS Usage

Collect statistics on the LFS usage of the current repository.

Repository
description

The description entered during repository creation.

README.md

You can preview README files. If no Readme file exists in
the repository, click Create Readme to create one.

Name: The default file name is README.md.
Format: The options are as follows:
e text: indicates text data or a text string.

e base64: Base64 is a method of representing binary data
based on 64 printable characters.

Content: The value can be customized.
e |[f the format is text, enter common text.

e |[f the format is base64, enter Base64-encoded content
that can pass the encoding verification.

Commit Message: Enter the commit information about the
file or folder, which can be customized.

Create File X
Forma
Q text basef4
onter
&
Characters left: 10485753 more characters
Commit Message
Add readme
&
Characters left: 1990 more characters

Info

Displays the creation time, creator, visible scope, and status
of a repository.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 53

CodeArts Repo
User Guide 8 Using CodeArts Repo

Parameter Description

Readme Displays the README file of the current repository. You can
click the file name to go to the Code tab page and view the
file content.

Languages Displays the percentage of each language by file size in the
current repository.

8.4 Managing Code Files

8.4.1 Managing Files
CodeArts Repo allows you to edit and compare files, and trace file changes.

When you access repository details console, the system locates the Files subtab
on the Code tab page. You can switch to different branches and tags to view the
files in the corresponding version. As shown in the following figure, the file list
under the main branch is displayed on the left, the Repository name (file details
of a branch or tag version) and History (branch or tag version) tab pages are
displayed on the right.

E Home <> Code 1% Merge Requests 0 @ Reviews B Associated Work Itams 7 Repository Statistics = Activities & Members {3 settings
[£10.11 MB Files 1 Commits ¥ 1Branches © 0Tags Tl Comparison

master
repot Create v

repol 2 History

com

com 25 initial commit

gitignore
.gitignore 25 - initial commit
README md

README md €290d125 - initial commit

build xmi

build. xml €280d125 - initial commit

File List

The file list is on the left of the Files tab page of the repository. The file list
provides the following functions:

1. Click a branch name to switch the branch and tag. After the branch and tag
are switched, the file directory of the corresponding version is displayed.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 54

CodeArts Repo

User Guide 8 Using CodeArts Repo
‘ master ~
\ repo / | + Creat
Q
Branches 2 Tags 0O
Y master default
Dev

+ Create Branch

LR T

2. Click Q to display the search box. You can search for files in the file list.

: master v
Q
SIC
1Y gitignore

M} README.md

porm.xmi

3. Click P Sheak v . The following functions can be extended:

NOTICE

Multi-level directories are supported when you create a file, rename a file,
create a directory, or create a submodule. Separate multi-level directories with
slashes (/), for example, java/com.

- Creating a file

Creating a file on the CodeArts Repo console is to create a file and run
the add, commit, and push commands. A commit record is generated.

On the Create File page, enter the file name, select the target template
type, select the encoding type, enter the file content and commit
information, and click OK.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 55

CodeArts Repo
User Guide

8 Using CodeArts Repo

L] NOTE
The Commit Message field is equivalent to the -m message in git commit and
can be used for 8.7 Viewing Associated Work Items.
- Creating a directory

Creating a directory on the CodeArts Repo console is to create a folder
structure, and run the add, commit, and push commands. A commit
record is generated.

A .gitkeep file is created at the bottom of the directory by default
because Git does not allow a commit of an empty folder.

On the Create Directory page, enter the catalog name and commit
information, and click OK.

- Creating a submodule
- Uploading a file

Uploading a file on the CodeArts Repo console is to create a file and run
the add, commit, and push commands. A commit record is generated.

On the Upload File page, select the target file to be uploaded, enter the
commit information, and click OK.

(10 NOTE

Move the cursor to the folder name and click * to perform the preceding operations
in the folder.

[+
Move the cursor to the file name and click — to change the file name.

Renaming a file on the CodeArts Repo console is to change a file name, and
run the add, commit, and push commands. A commit record is generated.

You can click a file name to display the file content on the right of the page.
You can modify the file content, trace file modification records, view historical
records, and compare the file content.

Repository Name Tab Page: Viewing File Details of a Branch or Tag Version

By default, the repository name tab page displays file details of the master
branch.

repo / + Creale v

R
com

2 25 - initial commit Repo Updated Mar 24, 2023 11:07:45 GMT+08:00

gitignore c290d125 - initial commit Repo Updated Mar 24, 2023 11:07:45 GMT+08:00

README.md c2004125 - initial commit Repo Updatex

bui

023 11:07:45 GMT+08:00

ild x| €290d125 - initial commit Repo Updated Mar 24, 2023 11:07:45 GMT+08:00

It displays the following information:

File. name of a file or folder.

Commit message. message of the last commit to the file or folder (-m in the
commit command). You can click the message to display the commit record.

Creator. creator of the last commit to the file or folder.
Update time: last update time of the file or folder.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 56

CodeArts Repo
User Guide 8 Using CodeArts Repo

L] NOTE
Commit messages are required for the edit and delete operations. They are similar to -m in

the git commit command and can be used for associating work items. For details, see 8.7
Viewing Associated Work Items.

History Tab: Viewing the Commit History of a Branch or Tag Version

The History tab page displays the commit history of a branch or tag version.

repo / + Create v

-

All Members - Q

initial commit =) -
2304125 | & |
Repo Created Mar 24, 2023 11:07:45 GMT=08:00
& Create Branch

10 = PerPage. Total 1 Records | © Create Tag

& Chemy-Pick
< Revert

@ Browse Code

On this page, you can perform the following operations on the commit history:
e C(lick a commit name to go to the commit details page.

e Click * to extend the following functions:
- Create Branch.

- Create Tag: You can create a tag for this commit. For details, see What is
a tag.

- Cherry-Pick: Use the commit as the latest commit to overwrite a branch.
It is used to retrieve a version.

- Revert: undoing this commit
- Browse Code.

Managing Repository Files
You can click a file name to manage the file. The functions are as follows:

repo / build.xmi

build xmi

261ke commt Message [T
;

£ Full Screen

1 v Kproject avaAntDe
2 <property environnen

<property nar & Copy Code

2 s <proper 5 Open raw

<proper

<proper & Edit
<proper

B <taskde:

10 <property nan

L Download

& Delete
12 <path id " location="${jar.dir}/${ant.project.name}.jar"/>

14 <property name="main-class” value="com.g42,Hellokorld"/>

(1 NOTE

When you maximize the browser window, the functions in the drop-down menu shown in
the preceding figure are displayed in tile mode.

e File name: View the detailed content of the file.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 57

CodeArts Repo
User Guide 8 Using CodeArts Repo

Table 8-3 Screen description

Screen Function Description

Function

File Capacity Indicates the capacity of the file.

Full Screen Full screen to view the file content
Copy Code Copy the file content to the clipboard.
Open Raw You can view the original data of the file.
Edit Edit the file online.

Download Download the file to the local PC.
Delete Delete a file

File content The email content is displayed.

[Click this icon to add review comments.

e Blame: View the change history of a file and trace operations.

On this tab page, a modifier corresponds to their modified content. You can a
record to view the commit details.

e History: View the commit history of the file.

On this page, you can perform the following operations on the commit
history:

- Click a commit name to go to the commit details page.
- provides the following functions:

®= (Create Branch.
® Create Tag: You can create a tag for this commit. (Introduction)

® Cherry-Pick: Use the commit as the latest commit to overwrite a
branch. It is used to retrieve a version.

" Revert: undoing this commit

" Browse Code.
e Comparison: compares the committed differences.

The differences compared on the CodeArts Repo console are displayed in a
better way than those on the Git Bash client. You can select different commit
batches on the GUI for difference comparison.

(11 NOTE

The comparison result shows the impact of merging from the left repository version to
the right repository version on the files in the right repository. If you want to know the
differences between the two file versions, you can adjust the left and right positions,
compare them again, and learn all the differences based on the two results.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 58

CodeArts Repo
User Guide 8 Using CodeArts Repo

8.4.2 Managing Commits

On the Code and Commits tab pages, view the commit records and graph of the

repository.
Commits
This tab displays the entire commit records of a branch or tag in the current
repository. You can filter records by time segment, committer, commit message, or
commit ID.
Commits Graph master v - All - Q
2023-03-09 1 Commit
initial commit = —=
BRI Created Mar 09, 2023 104007 GMT+.00 Al
Graph

The commit graph of a repository displays the entire commit history (including the
action, time, committer, commit message generated by the system or specified by
the committer) of a branch or tag and the relationship between commits in flow
chart.

You can switch between branches or tags. You can click a commit node or commit
message to go to the corresponding commit record.

Commits Graph master ~

initial commit

(11 NOTE

Compared with the History tab page under the Files tab page, the commit graph can
display the relationship between commits.

8.4.3 Managing Branches

Branching is the most commonly used method in version management. Branches
isolate tasks in a project to prevent them from affecting each other, and can be
merged for version release.

When you create a CodeArts Repo or Git repository, a master branch is generated
by default and used as the branch of the latest version. You can create custom
branches at any time for personalized scenarios.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 59

CodeArts Repo
User Guide 8 Using CodeArts Repo

GitFlow

As a branch-based code management workflow, GitFlow is highly recognized and
widely used in the industry. It is recommended for you to start team-based
development.

GitFlow provides a group of branch usage suggestions to help your team improve
efficiency and reduce conflicts. It has the following features:

e Concurrent development: Multiple features and patches can be concurrently
developed on different branches to prevent intervention during code writing.

e Team collaboration: In team-based development, the development content
of each branch (or each sub-team) can be recorded separately and merged
into the project version. An issue can be accurately detected and rectified
separately without affecting other code in the main version.

e Flexible adjustment: Emergency fixes are developed on the hotfix branch
without interrupting the main version and sub-projects of each team.

Feature ®--@ o

Develop @ @ @ @ @
Release o -0 @ o0

HotFix

Master

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 60

CodeArts Repo
User Guide

8 Using CodeArts Repo

Table 8-4 Suggestions on using GitFlow branches

Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2.
Descri | Core Main Feature Release Emergency
ption branch, developmen | developmen | branch, fix branch,
which is t branch, t branch, which is which is
used which is which is used to used to fix
together used for used to check out a | bugs in the
with tags to | routine develop version to current
archive developmen | new be released. | version.
historical t and must | features.
versions. always be Multiple
Ensure that | the branch branches
all versions | with the can exist
are latest and concurrently
available. most . Each
complete branch
functions. corresponds
to a new
feature or a
group of
new
features.
Validit | Long-term Long-term | Temporary | Long-term | Temporary
y
Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 61

CodeArts Repo

User Guide 8 Using CodeArts Repo
Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2...

When | Created Created e Created Created Created
to when the after the based on | based on based on
Create | project master the the develop | the
repository is | branch is develop | branch correspondi
created created. branch before the ng version
when a first release. | (usually the
new master
feature branch)
develop when issues
ment are found in
task is the master
received. or bug
e Created version.
based on
the
parent
feature
branch
when the
current
feature
develop
ment
task is
split into
sub-
tasks.
When | Never Not Developed Never Developed
to recommend | when being when being
Develo ed created. created.
p This
Branch
Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 62

CodeArts Repo

User Guide 8 Using CodeArts Repo
Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2... .
When | e When o After After a child | When a -
to the new feature version is to
Merge project features | branch is be released,
Other version is are developed the develop
Branch frozen, develope | and tested, | branch is
es into the d, it is merged | merged into
This develop feature into the this branch.
Branch or branches | parent
release are feature
branch merged branch.
are into this
merged branch.
into this | ¢ \When a
branch. new
o After version
bugs starts to
found in be
the develope
released d, the
version last
are fixed, version
hotfix (release
branches or
are master
merged branch)
into this is
branch. merged
into this
branch.
Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 63

CodeArts Repo
User Guide

8 Using CodeArts Repo

Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2... .
When | - e Whena | After new e Whena | When the
to version is | features are version is | correspondi
Merge to be developed released | ng bug
This released, | and tested and fixing task
Branch this on this archived, | is complete,
to branch is | branch, it is this this branch
Other merged merged into branch is | is merged
Branch into the | the develop merged into the
es release branch. into the | master and
branch. master develop
e When a branch. | branches as
version is e Whena |2 patch.
to be new
archived, version is
this develope
branch is d based
merged ona
into the released
master version,
branch. this
branch is
merged
into the
develop
branch
to
initialize
the
version.
When | - - After the - After the
to End correspondi correspondi
ng features ng bugs are
are fixed and
accepted the version
(released is accepted
and stable) (released

and stable)

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

64

CodeArts Repo
User Guide 8 Using CodeArts Repo

(11 NOTE

GitFlow has the following rules:

e All feature branches are pulled from the develop branch.

e All hotfix branches are pulled from the master branch.

e All commits to the master branch must have tags to facilitate rollback.

e Any changes that are merged into the master branch must be merged into the develop
branch for synchronization.

e The master and develop branches are the main branches and they are unique. Other
types of branches can have multiple derived branches.

Creating a Branch on the Console
Step 1 Access the repository list.
Step 2 Click a repository to go to the details page.
Step 3 Click the Code and Branches tabs. The branch list page is displayed.

Step 4 Click Create. In the displayed dialog box, select a version (branch or tag) based on
which you want to create a branch and enter the branch name. You can associate
the branch with an existing work item.

Create Branch

Characters left: 2000 more characters.

Work ltems to Associate

Cancel

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 65

CodeArts Repo
User Guide

8 Using CodeArts Repo

(11 NOTE

The branch name must meet the following requirements:

e The name cannot start with a hyphen (-), period (.), refs/heads/, refs/remotes/, or
slash (/).

e Spaces and special characters such as [\<~A:?*1()

m

|$&; are not supported.
e The name cannot end with a period (.), slash (/), or .lock.

e Two consecutive periods (..) are not allowed.

e The name cannot contain this sequence @{.

The name cannot be the same as another branch or tag name.

Step 5 Click OK. The branch is created.

--—-End

Managing Branches on the Console

You can perform the following operations in the branch list:

Filtering branches

- My: displays all branches created by you. The branches are sorted by the
latest commit time in descending order.

- Active: displays the branches that have been developing in the past three
months. Branches are sorted by the last commit time in descending order.

- Inactive: displays the branches that have not been developed in the past
three months. Branches are sorted by the last commit time in descending
order.

- All displays all branches. The default branch is displayed on the top.
Other branches are sorted by the last commit time in descending order.

You can click a branch name to go to the Files tab page of the branch and
view its content and history.

You can click a commit ID to view the content latest committed on the details
page.
Select branches and click Batch Delete to delete branches in batches.

You can click ¢ to associate work items with the branch.

You can click “* to go to the Comparison tab page and compare the current
branch with another branch.

Click = to download its compressed package.

You can click © to the Merge Requests tab page and create a merge
request.

Click @ to go to the repository settings page and set the branch as protected.

You can click O] to delete a branch as prompted.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 66

CodeArts Repo
User Guide 8 Using CodeArts Repo

NOTICE

You can download the compressed package of source code on the page only for
hosts that have configured IP address whitelists.

If you delete a branch by mistake, submit a service ticket to contact technical
support.

In addition, you can configure branches on the console.

e Merge Requests
e Default Branches
e Protected Branches

Common Git Commands for Branches
e Creating a branch

git branch <branch_name> # Create a branch based on the current working directory in the
local repository.

Example:

git branch branch001 # Create a branch named branch001 based on the current working

directory in the local repository.

If no command output is displayed, the creation is successful. If the branch
name already exists, as shown in the following figure, create a branch with
another name.

e Switching a branch

Switching a branch is to check out the branch file content to the current

working directory.
git checkout <branch_name> # Switch to a specified branch.

Example:
git checkout branch002 # Switch to branch002.

The following information shows that the switch is successful.

~/Desktop,/01_developer

§ git checkout branch00l

Switched to branch "branch0o0l’

e Switching to a new branch
You can run the following command to create a branch and switch to the new
branch directly.

git checkout -b <branch_name> # Create a branch based on the current working directory in the
local repository and directly switch to the branch.

Example:

git checkout -b branch002 # Create a branch named branch002 based on the current working
directory in the local repository and directly switch to the branch.

The following information shows that the command is successfully executed.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 67

CodeArts Repo
User Guide

8 Using CodeArts Repo

Viewing a branch

You can run the corresponding command to view the local repository branch,
the remote repository branch, or all branches. These commands only list
branch names. You can switch to a branch to view specific files in a branch.

git branch # View the local repository branch.
git branch -r # View the remote repository branch.
git branch -a # View the branches of the local and remote repositories.

The following figure shows the execution result of the three commands in
sequence. Git displays the branches of the local and remote repositories in
different formats. (Remote repository branches are displayed in the format of
remote/<remote_repository alias>/<branch_name>.)

¥ git branch
branchool

htt
htt

% git branch -r

¥ g1t branch -a
branch0ol

https1

Merging a branch

When a development task on a branch is complete, the branch needs to be
merged into another branch to synchronize the latest changes.

git merge <name_of the_branch_merged_to_the_current branch> # Merge a branch into the
current branch.

Before merging a branch, you need to switch to the target branch. The
following describes how to merge branch002 into the master branch.

git checkout master # Switch to the master branch.

git merge branch002 # Merge branch002 into the master branch.

The following figure shows the execution result of the preceding command.
The merge is successful, and three lines are added to a file.

to br
our branch 1is

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 68

CodeArts Repo
User Guide 8 Using CodeArts Repo

(11 NOTE

The system may prompt that a merge conflict occurs. The following shows that a
conflict occurs in the fileOnBranch002.txt file.

it merge bran

erging t1
N in f11e0nBr;
= and then

To resolve the conflict, open the conflicting file, manually edit the conflicting code (as
shown in the following figure), and save the file. Then run the add and commit
commands again to save the result to the local repository.

el _HEAD

1l <«—— conflict

222
srrarrr branchl0Z
alale!
ZlaLe!

This is similar to resolving a conflict that occurs when you commit a file from the local
repository to the remote repository. For details about the working principle, see 8.5.2
Resolving Code Conflicts in an MR.

A proper collaboration mode can prevent conflicts.

e Deleting a local branch
git branch -d <branch_name>

Example:

git branch -d branch002 # Delete branch002 from the local repository. The following
information shows that the operation is successful.

% git branch -d brancho

Deleted branch branch002

e Deleting a branch from the remote repository
git push <remote_repository_address_or_alias> -d <branch_name>

Example:

git push HTTPSOrigin -d branch002 # Delete branch002 from the remote repository whose alias
is HTTPSOrigin. The following information shows that the deletion is successful.

e Pushing a new local branch to the remote repository
git push <remote_repository_address_or_alias> <branch_name>

Example:

git push HTTPSOrigin branch002 # Push the local branch branch002 to the remote repository
whose alias is HTTPSOrigin. The following information shows that the push is successful.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 69

CodeArts Repo
User Guide

8 Using CodeArts Repo

(11 NOTE

If the push fails, check the connectivity.
e Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@********.com

If the returned information contains connect to host ********** com port 22:
Connection timed out, your network is restricted and you cannot access CodeArts
Repo. In this case, contact your local network administrator.

e Check the SSH key. If necessary, regenerate a key and configure it on the CodeArts Repo
console. For details, see 3.2 SSH Keys. Alternatively, check whether the HTTPS
password is correctly configured.

8.4.4 Managing Tags

Git provides tags to help your team manage versions. You can use Git tags to
mark commits to manage important versions in a project and search for historical
versions.

A tag points to a commit like a reference. No matter how later versions change,
the tag always points to the commit. It can be regarded as a version snapshot that
is permanently saved (the version is removed from the repository only when being
manually deleted).

When using Git to manage code, you can search for and trace historical versions
based on commit IDs. A commit ID is a long string (as shown in the following
figure) that is difficult to remember and not identifiable, compared with version
numbers such as V 1.0.0. Therefore, you can tag and name important versions to
easily remember and trace them. For example, tag a version as myTag_V1.0.0 or
FirstCommercialVersion.

bd (tag: myTag_V1.0.0)

Creating a Tag for the Latest Commit on the Console

Step 1 Access the repository list.

Step 2 Click a repository to go to the details page.

Step 3 Click the Code and Tags tabs. The tag list is displayed.

Step 4 Click Create. In the following dialog box that is displayed, select a branch or tag.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 70

CodeArts Repo

User Guide 8 Using CodeArts Repo
Create Tag X
* Based On
test v

* Tag Name

Description

You can add 2000 more characters

Cancel

L] NOTE

The tag name must meet the following requirements:

e The name cannot start with a hyphen (-), period (.), refs/heads/, refs/remotes/, or
slash (/).

e Spaces and special characters such as [\<~A:?*1()"'|$&; are not supported.
e The name cannot end with a period (.), slash (/), or .lock.

e Two consecutive periods (..) are not allowed.

e The name cannot contain this sequence @{.

An annotated tag is generated if you enter a message (the content after -m). A lightweight
tag is generated if you do not enter a message. For details about annotated tags, see Tag
Classification.

The name cannot be the same as another branch or tag name.

Step 5 Click OK. A tag is generated based on the latest version of the branch. The tag list
is displayed.

--—-End

Creating a Tag for a Historical Version on the Console

Step 1 Access the repository list.

Step 2 Click a repository to go to the details page. On the Code tab page, click the Files
and History tabs.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 71

CodeArts Repo
User Guide 8 Using CodeArts Repo

Step 3 In the historical commit list, click * next to a commit record and select Create
Tag. The dialog box for creating a tag for the historical version is displayed.

(11 NOTE

An annotated tag is generated if you enter a message (the content after -m). A lightweight
tag is generated if you do not enter a message. For details about annotated tags, see Tag
Classification.

Step 4 Click OK. A tag is generated based on the specified historical version of the
branch. The tag list is displayed.

----End
Managing Tags on the Console

e All tags in the remote repository are displayed in the tag list. You can perform
the following operations:

0d125]- initial commit Mar 24, 2023 11:07:45 GMT+08:00

Repo Committed 2904125 - initial commit Mar 24, 2023 11:07:45 GMT+08:00

- Click a tag in the Tag Name column to go to the file list of the tagged
version.

- Click a commit ID to go to the commit details page.

- Click — to download the file package of the labeled version in tar.gz or
zip format.

- Click @ to delete a tag from CodeArts Repo. (To delete the tag from the
local repository, perform the clone, pull, or -d operation.)

NOTICE

If an IP address whitelist is set for the repository, only hosts with whitelisted
IP addresses can download the repository source code on the page. If no IP
address whitelist is set for the repository, all hosts can download the
repository source code on the page.

e You can create a branch based on a tag.

e On the console, click the Files tab and click the file name of the target file.
Click the Comparison tab to compare commit records of the file.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 72

CodeArts Repo
User Guide

8 Using CodeArts Repo

pomml - EyBlame (QHsoy §) Compason
- fibe5a2s - Rename buldml v o- d0cccdlb - update pomml v
1 dproject nane="javalntDemo" basedir="." default="nain"y 1 Gproject nane="javakntDeno” basedir="." default="nain"y r
2 {property environment="eny 1| <property envirament="eny
] alue="con"/> 3 alue="con" />
4 4
5 "uild"/> 5 "build.dir" velue"build"/>
6 {build.dir}/classes")» b lasses. dir" "$build.dirH/classes")>
1 {build.dir}/far"s] ar.dir” value="${build.dir}/jar" />
8 {build.dir}H/funitregort”/> 8 eport. dir” "${build.dir}/junitreport”/s
9 <taskdef nane="findbugs" ¢ dy.und.cs. Findbugs anttask.FindBugsTe 9| <taskdef name="findbugs" classname="edu.und.cs.Findbugs .anttask.F indBugsTa
16~ <property nane="fb.report.dir" value="${build.dir}/findbugs"/> il

12 <path id="application” location="§{jar.dir}/${ant. project. name}.jar"/s 12| <path id="3pplication” location="§{jar.dir}/${ant. project. name}.jar"/s

Tag Classification

Git provides two types of tags:

Lightweight tag: is only a reference pointing to a specific commit. It can be
considered as an alias for the commit.

git tag <tag_name>

The following figure shows the information of a lightweight tag. You can find
that it is an alias of a commit.

diff --git a/7370149fix b/7370149fix
new file mode 100644
index 0000000..76d9127
- /dev/null
+++ b/7370149fix

No newline at

Annotated tag: points to a specific commit, but is stored as a complete object
in Git. Compared with lightweight tags, annotated tags contain messages
(similar to code comments). In addition to the tag name and message, the
tag information includes the name and email address of the person who
creates the tag, and tag creation time/date.

git tag -a <tag_name>-m "<message>"

The following figure shows the information of an annotated tag, which points
to a commit and contains more information than that of a lightweight tag.

tag: namel, tag: esay

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 73

CodeArts Repo
User Guide 8 Using CodeArts Repo

(11 NOTE

Both types of tags can identify versions. Annotated tags contain more information and are
stored in a more stable and secure structure in Git. They are more widely used in large
enterprises and projects.

Common Git Commands for Tags

e Creating a lightweight tag
git tag <tag_name> # Add a lightweight tag to the latest commit.

Example:
git tag myTag1 # Add a lightweight tag myTag1 to the latest commit.
e Creating an annotated tag
git tag -a <tag name>-m "<message>" # Add an annotated tag to the latest commit.
Example:

git tag -a myTag2 -m "This is a tag." # Add an annotated tag myTag2 to the latest commit, and the
message is "This is a tag.".

e Tagging a historical version

You can also tag a historical version by running the git log command to
obtain the commit ID of the historical version. The following uses an

annotated tag as an example:
git log # The historical commit information is displayed. Obtain the commit ID (only the
first several digits are required), as shown in the following figure. Press q to return.

git tag -a historyTag -m "Tag a historical version." 6a5b7c8db # Add tag historyTag to the
historical version whose commit ID starts with 6a5b7c8db, and the message is "Tag a historical
version.".

(10 NOTE

e If no command output is displayed, the tag is successfully created. If the command
output is displayed, indicating that the tag name already exists (as shown in the
following figure), change the tag name and perform the operation again.

e One commit can have multiple tags with unique names, as shown in the following
figure.

e Viewing tags in the local repository

You can list all tag names in the current repository and add parameters to

filter tags when using them.
git tag

e Viewing details about a specified tag
git show <name_of the_desired_tag>

Example:

Display the details about myTag1 and the commit information. The following
shows an example command output:

git show myTag1

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 74

CodeArts Repo
User Guide

8 Using CodeArts Repo

d (tag: myTagl)

22 fix a bug

diff --git a/file0l b/file0l
index eOafObd..b3b2032 100644
--- a/file0l
+++ b/file0l

Pushing a local tag to the remote repository

- By default, tags are not pushed when you push files from the local
repository to the remote one. Tags are automatically synchronized when
you synchronize (clone or pull) content from the remote repository to the
local one. Therefore, if you want to share local tags with others in the

project, you need to run the following Git command separately.
git push <remote_repository address_or _alias> <name_of the_tag_to_be pushed> # Push
the specified tag to the remote repository.

Example:
Push the local tag myTag1 to the remote repository whose alias is origin.
git push origin myTag1

- Run the following command to push all new local tags to the remote

repository:
git push <remote_repository_address_or_alias> --tags

{11 NOTE

If you create a tag in the remote repository and a tag with the same name in the
local repository, the tag will fail to be pushed due to the conflict. In this case, you
need to delete one of the tags and push another tag again.

You can view all tags in the remote repository by referring to Managing Tags on
the Console.

Deleting a local tag
git tag -d <name_of _the_tag_to_be_deleted>

The following shows an example of deleting the local tag tag1.

~/Desktop/01_developer

{was d7dcaff)

Deleting a tag from the remote repository

Similar to tag creation, tag deletion also needs to be manually pushed.
git push <remote_repository_address_or_alias> :refs/tags/<name_of the tag to_be_deleted>
The following shows an example of deleting a tag.

git push HTTPSOrigin :refs/tags/666 # Delete the tag 666 from the remote repository whose
alias is HTTPSOrigin.

[deleted]

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 75

CodeArts Repo
User Guide

8 Using CodeArts Repo

Obtaining a Historical Version Using Tags

If you want to view the code in a tagged version, you can check it out to the
working directory. The code can be edited but cannot be added or committed
because the checked-out version belongs only to a tag instead of a branch. You
can create a branch based on the working directory, modify the code on the
branch, and merge the branch into the master branch. The detailed steps are as
follows:

1.

Check out a historical version using a tag.
git checkout vV2.0.0 # Check out the version tagged with V2.0.0 to the working directory.

v o[A
V2.0.0°.

Create a branch based on the current working directory and switch to it.
git switch -c forFixVv2.0.0 # Create a branch named forFixV2.0.0 and switch to it.

fd/403

witched to a new branch

(Optional) If the new branch is modified, commit the changes to the

repository of the branch.
git add . # Add the changes to the staging area of the new branch.
git commit -m "fix bug for V2.0.0" # Save the changes to the repository of the branch.

Switch to the master branch and merge the new branch (forFixV2.0.0 in this
example) to the master branch.

git checkout master # Switch to the master branch.
git merge forFixV2.0.0 # Merge the changes based on the historical version into the master
branch.

(10 NOTE

The preceding commands are used to help you understand how to obtain a historical
version using a tag. Omit or add Git commands as required.

8.4.5 Managing Comparison

Click the Code and Comparison tabs of the repository details page, you can view
the code changes between branches or between tag versions through comparison.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 76

CodeArts Repo

User Guide 8 Using CodeArts Repo

Comparison
Select a branch or ag from each list or enter a commit id directly, then click Compare. The result shows the differences in the latest code on the left and the latest code on the right

Source branch Target Branch

¥ master

Compare Create Merge Request

Commits 3 Files Changed 2

AllChange Types v | Totalfiles: 2 changed +2-2 | Q. Open File (Ctri+P) + showAll | = Settings

A file03 +1-1 03
@@ -1,3+1,3 @8
Ama AR
688 <6 modify in master &
e [<<d
~ build:xml — porm.xml +1 -1 i

(11 NOTE

After comparing branches, you can create a merge request as required.

8.5 Managing MRs

8.5.1 Managing MRs

CodeArts Repo supports development of multiple branches and establishes
configurable review rules for branch merging. When a developer initiates an MR,

some repository members can be selected to participate in code review to ensure
the correctness of the merged code.

Repository :
administrator HE Developer

Start.

;

Bl Configure merge request
: policy

Create dev branch S

Reviewer/Approver

: Code on dev branch - : Review & Approve H

"""""""""""""") #l Create merge request B : Reviewer

— Pass gate
!]

Code conflicts g O

Fix conflicts online or

(11 NOTE

When a merge request is created, reviewers, approvers, and mergers will be notified by
emails and .

Based on the security of the code repository, you are advised to understand and configure
the following functions before using merge requests:

e 9.3.4 Merge Requests: You can set rules for merging branches.

e 9.3.1 Protected Branches describes how to configure the merge permission on a
protected branch.

Merge Request List

On the Merge Requests tab page, you can view merge requests list page.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 77

CodeArts Repo
User Guide 8 Using CodeArts Repo

e You can switch between tabs to view MRs in different states.
e You can click a request to go to the details page.

e You can view the brief information about the request, including the involved
branch, creation time, and creator.

e You can search for a request based on different conditions.
e You can click New in the upper left corner to create a request.

[ElHome «>Code §3 Merge Requests 1 GiReviews [Associated Work Items 7 Repository Statistics = Activities 2 Members £ Settings
€D +New [eY BylasiCreated v =L

New requirements are incorporated.
Merged 0 2 STRGTERIELE Created Apr 14,2023 101352 GMT-0300 Dey

(11 NOTE

Open: The request has entered the review or merge phase, and branches have not been
merged.

Merged: indicates that the request is approved and the branch is merged.
Closed: indicates that the request is canceled and the branch is not merged.
AlL displays MRs in all states.

Creating a Merge Request

Assume that the administrator has set branch merge rules. To create an MR for a
develop branch, perform the following steps:

Step 1 Go to the details page of a target repository.
Step 2 Switch to the Merge Requests tab page.

Step 3 Click New and select the branch to be merged.

Create Merge Request

Select two different branches for update or creation.
Source branch Target Branch

a testrepo - n o testrepo

¥ Dev - ¥ master

In the preceding figure, Dev (where the development task is completed) is merged
into the master branch.

L] NOTE
The branch of a forked repository can be selected as the source branch.

Step 4 Click Next. The system checks whether the two branches are different.

e If there is no difference between the two, the system displays a message and
the MR cannot be created.

e If the branches are different, the following Create Merge Request page is
displayed.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 78

CodeArts Repo

User Guide

8 Using CodeArts Repo

Create Merge Request

From Scrum007/repo Dev into Scrum007/repo master Cha anct
Title Mergers
Add [WIP] to the title, fo prevent a Work In Progress (WIP) merge request from being merged before it is ready Reviewers
Description
Approvers
= = 2 £ .

« 2 H B = b @ G B @ N I Preview settings

merge "Dev” into "master” Delete source branch after merge

Create File Function_1, Squash

Create File Function_2

Tip

Directly edit a work item in the associated work item. Yeu can also use keywords fix, fixed, resolve, resolved, and close plus a
number sign (#) in the description to associate with a work item. For example, fix #IR20230202018492 fix a bug
To set work item status and transition, go to " automatic ransition *, To set E2E tracing for integration, go to " E2E Settings

sociated Work ltems

Cancel

Commits 2 Files Changed 2

Create File Function_1 =

db4 7 =
Created Apr 19, 2023 10:09:43 GMT+08:00
Create File Function_2 =
711id =
Greated Apr 19, 2023 10:08:55 GMT+05:00

The lower part of the Create Merge Request page displays the file differences of
the two branches and the commit records of the source branch.

Step 5 Set the parameters according to the following table.

Table 8-5 Parameter description

Parameter

Description

Change
Branch

Click to return to the previous step and change the branch to be
merged.

Title

Enter the MR title.

Description

A default description is generated based on the merge and
commit messages of the source branch. You can modify the
description as required.

Associate
Work Items

You can choose to associate a merge action with a work item to
automatically change the status of the work item.

Mergers

Mergers have permissions to merge branches (by clicking the
merge button) when all approvers approve MRs and all
discussed issues are solved (or you can set the rule to allow
merge with issues unsolved). They can also close the MR.

Reviewers

Specified to participate in the merge branch review and can
raise questions to the initiator.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

79

CodeArts Repo
User Guide

8 Using CodeArts Repo

Parameter

Description

Approvers

Appointed to participate in the merge branch review. You can
provide review comments (approved or rejected) or raise
questions to the initiator.

Delete
source
branch after
merge

You can choose whether to delete the source branch after
merge. The preset status in the MR settings is initially used.

Squash

Enabling Squash merge keeps the history of the basic branch
clean, with meaningful commit messages, and can be easily
restored if necessary. For details, see Squash.

Step 6 Click Create Merge Request to submit the MR. The details page is displayed.

On the details page, merge rule statuses, mergers, reviewers, approvers, and
associated work items are displayed. You can view review comments, mark a
review comment as Unsolved, and view all activities related to the merge request.

New requirements are incorporated.

Review Gate ot enoush reviews

Approval Gate Not enough approvers. Contactthese approvers

Close

Comments resolved 0/0 | | Unresolved only | My comments only <Show Al

e Commits: You can view commit records of the source branch.

e Files Changed: You can view the changed content in an MR and filter the
change types such as addition, modification, deletion, and renaming.

e Pipeline: You can view the information about the pipeline.

--—-End

(11 NOTE

e When an MR is created, related members (reviewers and mergers) will be notified by
emails. The reviewer cannot be the creator of the merge request.

e If a single file contains 5000 different lines and there are over 100 different files, you are
advised to merge the branch using the client and then push it to CodeArts Repo.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 80

CodeArts Repo
User Guide

8 Using CodeArts Repo

Reviewing, Approving, and Merging MRs

Step 1
Step 2

Step 3

Step 4

Step 5

If you are notified of an MR as a reviewer, approver, or merger, perform the

following steps:

Go to the details page of a target repository.

Switch to the Merge Requests tab and click the name of the target merge request

to view details.

Review the target merge request.

Both the reviewer and approver can review the merge request and provide review
comments. If there is no comment, the reviewer can click Review Pass to
complete the review.

Review Gate Not enough reviewers. Contact these reviewers first

Approve the target merge request.

The reviewer can click Reject or Approve.

Approval Gate Not enough approvers. Contact these approvers first:

Pass the gate.

Table 8-6 Merge conditions

Merge Description

Condition

Code merge When the source branch code conflicts with the target branch

conflicts code, you need to resolve the conflict before proceeding to the
next step. For details about how to resolve the code conflict, see
Resolving Code Conflicts in an MR.

Review After the initiator resolves the reviews of all reviewers or

comment approvers, the gate is passed. For details see Detailed

gate Description of Review Comments Gate.

Pipeline gates

When the latest commit or pre-merged commit starts and
successfully executes the pipeline, the gate is passed. For details
see Detailed Description of Pipeline Gate.

E2E ticket After the combination request is associated with a work item,
number not the gate is passed. For details see Detailed Description of E2E
associated Ticket Number Association Gate.

Review gate When the number of reviewers reaches the minimum number,

the gate is passed. For details see Detailed Description of
Review Gate.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 81

CodeArts Repo

User Guid

e

8 Using CodeArts Repo

Squash

Step 6

Step 1

Step 2

Step 3

Step 4

Merge Description
Condition

Approval gate | When the number of approvers reaches the minimum number,
the gate is passed. For details see Detailed Description of
Approval Gate.

Merge the request.

After an initiator meets the preceding conditions, click Merger to merge the
request. Otherwise, click Close to close the request.

--—-End

Squash is to merge all change commit information of an MR into one and keep a
clean history. When you focus only on the current commit progress rather than the
commit information, you can use squash.

L] NOTE
If Squash is selected, multiple consecutive change records of the source branch can be

merged into one commit record (information of Configure Squash), and this new commit
record can be committed to the target branch.

e If the change history of the merge request contains only one commit, the commit record
in the target branch is for the source branch after Squash is selected.

e If the change history of the merge request contains multiple commits, the commit
record in the target branch contains the information of Configure Squash after Squash
is selected.

To better understand this function, perform the following operations:
Create a repository.

Name it repo.

Create a branch.

Name it Dev.

Submit the creation.

Take creating a file as a commit.

Dev branch: Create two files and name them Function_1 and Function_2.

Check the effect before Squash is enabled.

Find the Dev branch. Click the Code, Commits, and Commits tabs to view the
commit information.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 82

CodeArts Repo
User Guide

8 Using CodeArts Repo

& Home 1 Merge Requests 0 (:Reviews [Associated Work Items

[30.13 MB Fies ¥ 2Branches ©07Tags T Comparison

| Commits | Graph | Dev

2023-04-19 2 Commits

7 Repository Statistics i Activities & Members { Settings

Create File Function_2 =

© BIEERERS Created Apr 19,2023 100955 GMT-05.00

Create File Function_1 [=

© IEAEEAY Created Apr 19, 2023 10:09:43 GMT+08:00

7111932

cdba7oas | 5

2023-0324 1 Commit

initial commit =)
@ Repo Created Mar 24, 2023 11:07:45 GMT+08:00

Step 5 Create and merge a request.

2000125 | &

1. Set the source branch to Dev and target branch to master. Create a merge

request.

Dev branch: Name the merge request as Code Merge, select Squash, and

enter Configure Squash.

New function development|

- T N7

| configure Squash |

2. Complete the review and approval.

Step 6 Check the effect after Squash is enabled.

After the request is successfully merged, click the Code, Commits, and Commits
tabs, select the master branch. Compared with Step 4, the committed content has

been merged.

[Home 11 Merge Requests 0 (@ Reviews B Associated Work Items 1 Repository Statistics. = Activities & Members.

[30.16 MB Files 9 2Branches ©07Tags) Comparison

| Commits | Graph | master

2 settings

2023-04-19 2 Commits

11 merge Dev into master =] .
i1 | &

© RGBS Created Apr 19,2023 10:13:14 GT+08:00
New function development (=] -
19170008 | &)

© SRS Created Apr 19,2023 10:13:13 GMT=08:00

2023.03:24 1C

2000125 | &

initial commit =)
@ Repo Created Mar 24, 2023 11:07-45 GMT+08:00

--—-End

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

83

CodeArts Repo
User Guide 8 Using CodeArts Repo

8.5.2 Resolving Code Conflicts in an MR

When using CodeArts Repo, you may encounter the situation where two members
in the same team modify a file at the same time. Code fails to be pushed to a
CodeArts Repo repository due to the code commit conflict. The following figure
shows a push failure caused by the file change conflict in the local and remote
repositories.

(1 NOTE

e The returned messages vary depending on Git versions and compilers but have the
same meaning.

e The information similar to "push failure" and "another repository member" in the
returned message indicates that there is a commit conflict.

e Git automatically merges changes in different lines of the same file. A conflict occurs
only when the same line of the same file is modified (the current version of the local
repository is different from that of the remote repository).

e Conflicts may occur during branch merge. The locating method and solution are
basically the same as those for the conflict during the commit to the remote repository.
The following figure shows that a conflict occurs when the local branch1 is merged into

the master branch (due to the changes in the file01 file).

<top,/02_developer 4

ranchl
filed1
ntent): Merge conflict in filell

Automatic merge failed; fix conflicts and then commit the result.

Resolving a Code Commit Conflict

To resolve a code commit conflict, pull the remote repository to the working
directory in the local repository. Git will merge the changes and display the
conflicting file content that cannot be merged. Then, modify the conflicting
content and push it to the remote repository again (by running the add, commit,
and push commands in sequence).

The following figure shows that there is a file merge conflict when you run the
pull command.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 84

CodeArts Repo
User Guide 8 Using CodeArts Repo

Modify the conflicting file carefully. If necessary, negotiate with the other member
to resolve the conflict and avoid overwriting the code of other members by
mistake.

(11 NOTE

git pull combines git fetch and git merge. The following describes the operations in detail.

git fetch origin master # Pull the latest content from the master branch of the remote host.
git merge FETCH_HEAD # Merge the latest content into the current branch.

During merge, a message indicating that the merge fails due to a conflict is displayed.

Example: Conflict Generation and Resolution

The following shows an example to help you understand how a conflict is
generated and resolved.

A company uses CodeArts Repo and Git to manage a project. A function (the
file01 file is modified) of the project is jointly developed by developer 1 (01_dev)
and developer 2 (02_dev). The two developers encounter the following situation.

1. file01 is stored in the remote repository. The following shows the file content.

fileO1
1 ##file@1AAAAAAAAAAAA
2 ##file@62BBBBEBBBBBBB
3 ##file@3CCCCCCCCCCCC
4 ##file@4DDDDDDDDDDDD
5

2. 01_dev modifies the second line of file01 in the local repository and
successfully pushes the file to the remote repository. The following shows the
file content in the local and remote repositories of 01_dev.

fileO1
1 #FHfi1led1AAAAAALAALLN
2 #Hmodify by 81 dew
3 #F#f11e@3CCOCCCCCCCCC
4 ##f11=84000D0DDD0DDDDD
5 ## add one line by 81 dev

3. 02_dev also modifies the second line of file01 in the local repository. When
02_dev pushes the file to the remote repository, a conflict message is
displayed. The following shows the file content in the local repository of
02_dev, which is conflicting with that in the remote repository.

HHf1le0lAbbbbbbbbbbh
#H modify by 02 dev
HHf1le03CCCCC0000000
#Hf11e04DDDDDDDDDDDN
#1 add by 02 dev

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 85

CodeArts Repo
User Guide 8 Using CodeArts Repo

4. 02_dev pulls the code in the remote repository to the local repository, detects
the conflict starting from the second line of the file, and immediately contacts
01_dev to resolve the conflict.

5. We find that they both modified the second line and added content to the
last line, as shown in the following figure. Git identifies the content starting
from the second line as a conflict.

BHfi1e01AAAAARAAAAAA
<< HEAD

i modifv by 0Z_dev |modify by 02_dev
WH£11e03CCCCCCCCCCCC
##1i1e0400DDDDDDDDDD
#H add by 02 dev

FEmodify by ULl _dev modify by 01_dev
##£11e03CCCCCCCCCCCT
##£11e0400DDDDDDDDDD _
add one line by 01 dev commit ID
P at5daac0I7230b215E

(11 NOTE

Git displays the changes made by the two developers and separates them using

e The content between <<<<<<<HEAD and ======= indicates the changes of the
local repository in the conflicting lines.

e The content between ======= and >>>>>>> indicates the changes of the remote
repository in the conflicting lines, that is, the pulled content.

e The content after >>>>>>> is the commit ID.

e Delete <<<<<<<HEAD, =======, >>>>>>>, and commit ID when resolving the
conflict.

6. The two developers agree to retain all changes after discussion. After 02_dev
modifies the content, the modified and added lines are saved in the local
repository of 02_dev, as shown in the following figure.

HHf1le0lABANAARARAAN

B modifv by 02 _dev
HHmodifvy by 01 dev
BH£11e030000CCCCo000
##£11e0400DDDDDDDDDD

#H add by 02 _dev

add one line by 01 dev

7. 02_dev pushes the merged changes to the remote repository (by running add,
commit, and push commands in sequence). The following shows the file
content in the remote repository after a successful push. The conflict is
resolved.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 86

CodeArts Repo
User Guide

8 Using CodeArts Repo

fileO1

#1181 AMAALAALALLA

modify by 82 dev
Hmodify by 81_dev
##file@3CCCCCCCCCCCC
#4#f112e840DDDDD0ODDDDD

add by 82 dev

add one line by @1 _dev

S W P W

(1 NOTE

In the preceding example, TXT files are used for demonstration. In the actual situation, the
conflict display varies in different text editors and Git plug-ins of programming tools.

Preventing a Conflict

Repository preprocessing before code development can prevent commit and
merge conflicts.

In Example: Conflict Generation and Resolution, 02_dev successfully resolves the
conflict in the commit to the remote repository. For 02_dey, the latest code version
of the local repository is the same as that of the remote repository. For 01_dey,
version differences still exist between the local and remote repository. A conflict
will occur when 01_dev pushes code to the local repository. The following
describes methods to resolve the conflict.

Method 1 (recommended for beginners):

If your local repository is not frequently updated, clone the remote repository to
the local repository to modify code locally, and commit the changes. This directly
resolves the version differences. However, if the repository is large and there are a
large number of update records, the clone process will be time-consuming.

Method 2:

If you modify the local repository every day, create a develop branch in the local
repository for code modification. When committing code to the remote repository,
switch to the master branch, pull the latest content of the master branch in the
remote repository to the local repository, merge the branches in the local
repository, and resolve the conflict. After the content is successfully merged into
the master branch, commit it to the remote repository.

Resolving a Merge Conflict on the Console

CodeArts Repo allows you to manage branches. The following simulates a
conflicting MR and describes how to resolve it.

Step 1 Create a repository.

Step 2 Create a file named file03 on the master branch in the repository. The initial

content is as follows:

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 87

CodeArts Repo

User Guide 8 Using CodeArts Repo
master v
repo [file03
Q _
file03 5 Blame
com

1 AAL
. 2 EBB
-] .gitignore O 3 coc

Mi README. md

build.xm

[file03

Step 3 Create a branch named branch007 based on the master branch.

The content in the master branch is the same as that in branch007. The following
describes how to make them different.

Step 4 In the master branch, modify file03 as shown in the following figure, and enter
the commit message modify in master.

master v
repo / file03
Q — —
file03 [Blame (2 History
com

1 AAL
—— 2 B modify in master B
-] .gitignore @ s coc

M} README.md

build.xm

[file03

Step 5 Switch to branch007, modify file03 as shown in the following figure, and enter
the commit message modify in branch007. Then the two branches are different,
that is, a conflict occurs.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 88

CodeArts Repo

User Guide 8 Using CodeArts Repo
branch007 v
repo / file03
Q — —
file03 [Blame (2 History
com
1 AAA
— 2 modify in branch&é7 EBEB
%] .gitignore a 1 cce

Ml README.md

build.xm

3] file03

cuU

Step 6 Create an MR to merge branch007 to the master branch. Click Create Merge
Request to submit the MR.

Merge request details page is displayed. You can also click the name of the merge
request in the merged requests list to access this page. Merge conflict: unsolved
displays on the details page. You are advised to Fix them online or offline.

New requirements are incorporated.

1 ERERERENRENT Crealeq ADT 14, 2023 09'52:47 GMT+08:00 FrOm Drancnoo7 into master I source branchiis 1 Commil behind Ui laigel brand

Details Commits

Vou £an use keyworas "I, Txa
#IR20230202018492 ix 3 bug.

Merge Conaltions

mmit doc not pul up the third party platoform pipoline. For dotails, 5o

Step 7 Perform the following operation to resolve the conflict:

e Fix them online (recommended for small code volume)

a. Click Fix them online. The following page is displayed, showing the code
conflict.

Details Cormmits

= Hide All

w

To fix code conflicts online:

Commit Conflict Resolution Cancel

b. If the conflict cannot be resolved by overwriting the file, click to go
to the Manual Editing page, as shown in the following figure. The

conflict display format is similar to that in Example: Conflict Generation
and Resolution.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 89

CodeArts Repo

User Guide 8 Using CodeArts Repo
< Details Conflicts: 1 Files: 1 Hide All
v = file03 ¢ m
; ;;2555 fileo = I
3 modify in branchee? BEB

5 B modify in master B
6 23ry2y Filedd 1
ccc

Commit Message
To fix code conflicts online:

You can als:

o commit changes to both target and source bra;

‘Commit Conflict Resolution cancel

¢. Manually modify the code to resolve the conflict and commit the
changes.

(11 NOTE

Enter a commit message.

In the preceding figure, the following signs are used for conflict display and
separation: <<<<, >>>>, and ====. Delete the lines where the signs are located
when modifying code.

e offline (recommended for large-scale projects)

Click offline. The following page is displayed. Perform the operations as
prompted.

Switch, View, and Merge Branches Locally X

Step 1 Update the code and switch to this MR source branch.

gzit fetch origzin
git checkout —b branchO07 origin/branch007

I Step 2 Merge the target branch into the source branch.

21t merge origin/maszter

Step 3 Manually resolve conflicts locally as prompted.

Step 4 Commit code to the remote end after conflicts are resolved.

git add .
zit commit —m ' meszagze’’

gzit push origin branch007

i Step 5 Refresh the page and continue to review the MR.

alirres prsees a1

(11 NOTE

CodeArts Repo automatically generates Git commands based on your branch name. You
only need to copy the commands and run them in the local repository.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 90

CodeArts Repo
User Guide 8 Using CodeArts Repo

Step 8 After the conflict is resolved by using either of the preceding methods, you can
click Merge to merge branches. The system displays a message indicating that the
merge is successful.

You can also follow the instructions in 8.5.1 Managing MRs.

Now, the content of the master and branch007 branches is the same. You can
switch between branches to check the content.

--—-End

8.5.3 Detailed Description of Review Comments Gate

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.
Step 2 Configure the gate.

e Select Merge after all reviews are resolved and click Submit to save the
settings. The access control is enabled.

e Deselect Merge after all reviews are resolved and click Submit to save the
settings. The access control is closed.

--—-End

Effect of Gate Triggering

The reviewers or approvers can move the cursor to the code line in Files Changed

of the Merge Request and click the & icon to add review comments.
Alternatively, the reviewers or approvers can directly add review comments in
Details > Comments of the Merge Request.

e Review comment gate: passed: It is displayed when there is no review
comments in the merge request, or all review comments do not need to be
resolved or have been resolved.

E Review comment gate: passed :-

e Review comment gate: failed: It is displayed when the review comments in
the Merge request are not resolved.

Passing of the Gate

After you have resolved the issue raised in the review comments, you can switch
the status of the review comments from Unresolved to Resolved in Details >
Review Comments of the Merge Request. In this case, the status of the review
comments is displayed as Review comment gate: passed.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 91

CodeArts Repo
User Guide 8 Using CodeArts Repo

Comments Activities Comments resolved 0/0 Unresolved only My comments only <-Show All

% - Jun 25, 2023 11:32:26 GMT+08:00

Code writing is not standard

8.5.4 Detailed Description of Pipeline Gate

(1 NOTE

Pipeline gate supports only merge requests whose merge mechanism is Approval.

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Click Create to set a branch policy for the target branch.

Step 3 Configure the gate.

e Select Enable pipeline gate under the policy and click OK to save the
settings. The gate is enabled.

e Deselect Enable pipeline gate under the policy and click OK to save the
settings. The gate is closed.

----End

Effect of Gate Triggering

e Merge into pipeline gate: passed: It is displayed when the pipeline is
successfully started after the latest commit or pre-merge commit operation is
performed.

Merge into pipeline gate: passed } Pipeline #189 success for 41cdbcd

e Merge into pipeline gate: failed: It is displayed when the repository has no
associated pipeline task or the latest commit or pre-merge commit fails to
start the pipeline.

Passing of the Gate

Step 1 Choose CICD > Pipeline.

Step 2 Click Create Pipeline and enter the following information:
e Name: Enter a custom name.
e Pipeline Source: Select Repo.

e Repository: Select the target code repository for which you want to create a
merge request.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 92

CodeArts Repo

User Guide 8 Using CodeArts Repo
e Default Branch: Select the target branch of the merge request.

Step 3 Click Next, select the target template as required, and click OK.

Step 4 After the task is created, the system automatically switches to the Task
Orchestration tab page in the task details and switches to the Execution Plan tab
page.

Step 5 Enable Merge Request Event Triggering and select the following trigger events
based on the site requirements:

e Create: triggered when an MR is created.
e Update: triggered when the content or setting of an MR is updated.
e Merge: triggered when an MR is merged. The code submission event will also
be triggered.
e Reopen: triggered when an MR is reopened.
Step 6 Configure other information about the pipeline task and click Save.
Step 7 Return to the CodeArts Repo and trigger the event selected in Execution Plan to

enable the repository to start the pipeline task.

--—-End

8.5.5 Detailed Description of E2E Ticket Number Association

Gate

Opening/Closing the Gate

Step 1

Step 2

Go to the target repository and choose Settings > Policy Settings > Merge
Requests.
Configure the Gate.

e Select Must be associated with CodeArts Req and click Submit to save the
settings. The gate is enabled.

e Deselect Must be associated with CodeArts Req and click Submit to save
the settings. The gate is closed.

--—-End

Effect of Gate Triggering

e E2E ticket number: associated: It is displayed when the merge request is
successfully associated with the work item.

ﬂ EZE ticket number: associated)

e E2E ticket number: not associated: It is displayed when the merge request
has no associated work item.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 93

CodeArts Repo
User Guide 8 Using CodeArts Repo

Passing of the Gate
Step 1 Click the target project name to access the project.

Step 2 On the Work Items tab, click Create Work Item and choose Task from the drop-
down list. The page for creating a work item is displayed.

FPlans Work Items Sprints Statistics Reports

All - Backlog Bug + Create Work ltem All wor

Id Subje Epic
Feature

Story

Task

Bug

Step 3 Enter a title, for example, Sprint 1.

Retain the default values for other parameters. Click Save.

Plans Work Items Sprints Statistics Reports

Al ~ Backlog Bug + Create Work ltem All work items Q, Tracker. Epic | Feature | Story | Tesk | Bug

Id Subject Closed On Status Assigned To

| 708635317 Iteration 1 - New Administrators

Step 4 Choose Code > CodeArts Repo.
Step 5 Click a repository name to go to the target repository.

Step 6 Switch to the Merge Requests tab page and click the name of the target merge
request to access the target merge request.

Step 7 On the Details page, click the <+ icon next to Associated Work Items to search
for and select the target work item.

Step 8 Click OK. The E2E ticket number is associated.

--—-End

8.5.6 Detailed Description of Review Gate

(11 NOTE

The review gate supports only the merge requests whose merge mechanism is Approval.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 94

CodeArts Repo
User Guide 8 Using CodeArts Repo

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Click Create to configure a branch policy for the target branch.

Step 3 Configure the Gate.

e Set Reviewers Required to a number except 0 and click OK to save the
settings. The gate is enabled.

e Set Reviewers Required to 0 and click OK to save the settings. The gate is
closed.

--—-End

Effect of Gate Triggering

e Review gate: passed: It is displayed when the number of reviewers who give
pass reaches the Reviewers Required.

Review gate: passed) Hide ~

Review Details

This MR has the following review rules. Modify Rules
Number of Reviewers

Minimum Reviewers

1 person/1 person 1 person

e Review gate: failed: It is displayed when the number of reviewers who give
pass does not reach the Reviewers Required.

Review Details

This MR has the following review rules. Modify Rules
Number of Reviewers

Minimum Reviewers

0 person/1 person 0 person

Passing of the Gate

After completing the review, the reviewer needs to choose Details > Review Gate
and click Pass. The review is passed. For details, see Setting Branch Policies.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 95

CodeArts Repo
User Guide 8 Using CodeArts Repo

8.5.7 Detailed Description of Approval Gate

(10 NOTE

The approve gate supports only the merge requests whose merge mechanism is Approval.

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Click Create to configure a branch policy for the target branch.

Step 3 Configure the Gate.

e Set Approvals Required to a number except 0 and click OK to save the
settings. The gate is enabled.

e Set Approvals Required to 0 and click OK to save the settings. The gate is
closed.

--—-End

Effect of Gate Triggering

e Approval gate: passed: It is displayed when the number of approvers who
give pass reaches the Approvals Required.

Approval gate: passed) Hide ~

Approval Details

This MR has the following review rules. Modify Rules
Number of Reviewers

Minimum Reviewers

1 person/1 person 1 person 0 person

e Approal gate: failed: It is displayed when the number of approvers who give
pass does not reach the Approvals Required.

Approval Details
This MR has the following review rules. Modify Rules
Number of Reviewers

Minimum Reviewers

0 person/1 person 0 person 0 person

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 96

CodeArts Repo
User Guide 8 Using CodeArts Repo

Passing of the Gate

After completing the approval, the approvers need to choose Details > Approval
Gate and click Pass. The approval is passed. For details, see Setting Branch
Policies.

8.6 Viewing Review Records of a Repository

On the Reviews tab page of the repository details page, you can view the review
information of the repository from MRs and commits. You can filter records based
on the filter criteria.

Table 8-7 Review record parameters

Parameter Description

Status Review records are classified into three statuses: Unresolved,
Resolved, and Resolve Not Needed.

Review Comment provided by the reviewer

comment

Approver Reviewer who provides the review comment

Review date Date when the reviewer submits the review comments
Assign to Assign the task to the default or specified personnel.

Adding Comments on the Reviews for MR Tab

Method 1: Go to the details page of the target merge request and add a
comment at the bottom of the page.

Comments Activities Comments resolved 0/1 Unresolved only My comments only <-Show All

Method 2: Go to the details page of the target merge request, click Files

£ icon next to a code line in the code file to add a

Changed, and click the
review.

Reviewers REEBGRBIAL

S« ~ HB @ G B @ 33 I3 Preve

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 97

CodeArts Repo
User Guide

8 Using CodeArts Repo

Adding Comments on the Reviews for Commit Tab

Method 1: In the code file, click “J next to a line of code to add review
comments.

21 Comparison

E e @ B @ N3 Preview

You have a draft that was automatically saved. Restore?

Method 2: On the Commits tab, click a commit to switch to the comment page
and add review comments.

[Home) Merge Requests 1 (RReviews [Associated Worktems] Repository Statistics = Activities 2 Members &} Settings

[%10.19 MB Files P 3Banches ©0Tags 1)) Comparison

initial commit c2900125 &

Repo committed at Mar 24, 2023 11.07.45 GMT+08:00 ¥ master

initial commit

Files Changed

Method 3: On the Commits page, click the Files Changed submenu and click the

&2 jcon next to a code line to add a review.

Files Changed ~ Commznts

Total fles 1 changed +1 Q OpenFike (Cirl+P) 4+ ShowAll | 2 Setiings
A2 =]

Reviewers

O HBEE®»e G@Ben s Preven,

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 98

CodeArts Repo
User Guide 8 Using CodeArts Repo

8.7 Viewing Associated Work Items

8.7.1 Introduction

Work item is used to track work content in CodeArts Req. A work item usually has
a unique ID and a description. It can be a requirement, bug, or task. In CodeArts
Req, work item is a work content list that supports GUI-based management.

You can use the following associations and configure E2E Tracing.

e Commit association
e Create a branch association.

You can select the target work item under Associated Work Items on the
page for creating a branch.

| Create Branch

* Based On

master W

* Branch Name

Description

Characters left: 2000 more characters

Associated Work Items

‘ -

3727 lteration 2
il 4

e Merge request association

You can select the target work item under Associated Work Items on the
page for creating a merge request.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 99

CodeArts Repo

User Guide 8 Using CodeArts Repo

Create Merge Request

From Scrumoo7irepo Dev into Scrumo07/repo master Change Branch

Mergers

o

= Title

Add [WIP] to the title, o prevent a Work In Progress (WIF) merge request from being merged before it is ready

Reviewers
Description

4« 2 HBEE e @ QG 8B@ 5N 3 Preview

Approvers
merge "Dev” into "master”
Create File Function_1, © EpwEe
Create File Function 2

Settings

Delete source branch after merge

Squash
72/5000
Tip
Directly edit a worK item in the associated WOrK item. You can also use keywords fix, fixed, resolve, resolved, and close plus a
number sign (#) in the description to associate with a work item. For example, fix #IR20230202018492 fix a bug.
To set work item status and transition, go to * automatic transition *, To set E2E tracing for integration, go to " E2E Settings ".
Associated Work ltems
321 Iteration 2 Resolved
Cancel
Create Merge Request
From Serumoo7irepo Dev into Scrumo07/repo master Change Branch
- Title Mergers
New requirements are incorporated.
Add [WIP] to the title, to prevent a Work In Progress (WIP) merge fequest from being merged before its ready. Reviewers
Description
Approvers
4« 2 HB =& v @ (@ B @ 13 Preview Settings
merge "Dev” into "master” Delete source branch after merge
Create File Function_1, Squash
Create File Function 2
72/5000

Tip
Directly edit a work item in the associated work item. You can also use keywords fix, fixed, resolve, resolved, and close plus a
number sign (#) in the description to associate with a work item. For example, fix #IR20230202018492 fix a bug
To set work item status and transition, go to " automatic fransition *, To set E2E tracing for integration, go to " E2E Settings "

Associated Work ltems

New

Create Merge Request Cancel

3727 Iteration 2

(11 NOTE

CodeArts Req: a CodeArts service that provides R&D teams with efficient collaboration
services. You can create multiple Agile Scrum and Lean Kanban projects to manage
requirements, track bugs, create project Wiki, host documents in the cloud, analyze

statistics, and manage person-hours.

Preparations

Step 1 (Optional) Configure the commit transition status.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 100

CodeArts Repo
User Guide 8 Using CodeArts Repo

(11 NOTE

By default, the code commit status is configured as follows:

e The fix keyword is associated with the Resolved target state (enabled by default).

e The close keyword is associated with the Closed target state (disabled by default).

e The resolve keyword is associated with the Resolved target state (enabled by default).

In project settings, a project manager or another role with project setting permission can
set three commit message keywords (such as fix, close, and resolve) for different work
item types (Epic, Feature, Story, Task, and Bug). You can associate each keyword with a
target status (for example, Resolved or Closed). The work item status can also be
customized.

The following describes how to associate the close keyword to Rejected in a Task work
item.

Click the target project name to access the project.

2. Find the code commit status corresponding to a task, as shown in the
following figure.

- Statuses and Transitions

Epics > Statuses Transitons

Features >

Nork

These setings only apply to the task. Set automated transiion rules that match your working habits
* CICD
Stories)
At Change Status

Task o+ @ change Handier
Work ftem statuses are automatically changed based on code commit detalls

esting Work item handlers are automafically assigned based on the ftem status.
Tesing Fields and Templates :

Code Commit Detail Target Status Apply

Documentation

EUO) @D change status

v Bugs 3 || Work item statuses are automatically changed based on code comit detals fi Resled ‘:)

Common Fields close Closed 0

Project Settings Common Statuses
resolve Resolved ()

CloudTest Setfings aoher

3. Click the Target Status of close, set it to Rejected, and set Apply to @ .
The settings are automatically saved.

Then, you can use the close keyword in the commit message to change the
status of a Task work item to Rejected when committing local code.

Example:
git commit -m "close # <task_work_item_id> <commit_message>"
Step 2 Create a work item.

1. Click the target project name to access the project.

2. On the Work Items tab, click Create Work Item and choose Task from the
drop-down list. The page for creating a work item is displayed.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 101

CodeArts Repo
User Guide 8 Using CodeArts Repo

Plans Work: Items Sprints Statistics Reports

All - Backlog Bug + Create Work Item All worl

Id Subje

Epic
Feature

Story

Task

Bug

3. Enter a title, for example, Sprint 1.
Retain the default values for other parameters. Click Save.

(10 NOTE

The work item management page is displayed. You can view the work item ID and the
status is New.

In this example:

- The ID of task01 is 708206208.

- The ID of task02 is 708206209.

On the project homepage, choose Work > Work Items to obtain a work item ID.

--—-End

8.7.2 Commit Association

With CodeArts Repo, you can associate each code commit with a work item of
CodeArts Req.

e Associated work items help developers accurately record tasks for fixing bugs
and developing new features.

e Associated work items allow project managers to view information such as
change committer and committed content involved in each requirement and
bug fixing task.

(11 NOTE

Commit: You can commit and save operations on files in the working directory, including
creating, editing, and deleting files. The following shows the commit command, in which
the -m parameter is mandatory and followed by the commit message.

git commit -m <commit_message>

On the CodeArts Repo console, a changed file can be saved only after you enter a
commit message. Each saving operation on the console is a commit, and the
mandatory message corresponds to the content after -m in the commit
command.

CodeArts Repo automatically associates work items with code by capturing
keywords from the commit message after -m. The most commonly used keyword

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 102

CodeArts Repo
User Guide

8 Using CodeArts Repo

is fix, which is the recommended keyword in the prompt. The keyword must meet
the following format:

git commit -m "fix #<work_item_id> <commit_message>"

If a work item is successfully associated, the system automatically changes the
work item status based on the configured code commit status transition. By
default, the fix keyword sets the work item to the resolved state.

Example:
git commit -m "fix #123456 fixed this bug"

The work item 123456 is set to the resolved state after being pushed to CodeArts
Repo.

CodeArts Repo allows you to associate work items with code on the local PC or on
the console. The following describes the two methods.

(11 NOTE

e Only members of the same project and repository can associate work items with code.

e For the work item creator, specified modifier, or account (such as the project manager)
that has the permission to modify all work items in the project, their association
operations can change the work item status (new or resolved) and generate comment
records. In the association records, Transition successful is displayed in the Result
column. When you use an unauthorized account to perform operations, only association
records are generated. The work item status is not changed, no comment record is
generated, and Association successful is displayed in the Result column.

Associating a Work Item with Locally Committed Code

Step 1
Step 2

Prepare the Git environment on the local PC. For details, see 2.1 Installing and
Configuring Git. If you can access the repository (the corresponding remote
repository has been associated), perform the following operations:

Create a file on the local master branch and push the file to the remote repository.
During the push, use the fix keyword in -m to associate the work item task01
with code.

(1 NOTE

e In this example, the master branch is modified to simplify the process so that you can
quickly understand how to associate a work item with code committed on the local PC.

e Do not modify the master branch in the actual situation. It is recommended that you
create a branch for file operations, merge the changed file into the master branch, and
push the master branch to the remote repository. (This is a default rule and good habit.)

Right-click in the local repository folder to open the Git Bash client.

Check whether the remote repository address is successfully associated.
git remote -v # View the remote repository address associated with the local repository.

In the following figure, the underlined part indicates the remote repository address
associated with the local repository, and the information before the address is the
alias of the remote repository on the local PC.

$ git rem

_000

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 103

CodeArts Repo
User Guide 8 Using CodeArts Repo

If the associated repository is not the one you want or the repository is not
associated, clone the desired repository to the local PC.

After the clone is successful, run the git remote -v command again to verify the
association.

Step 3 Check the repository status and switch to the master branch. (Skip this step for a
repository cloned in the previous step.)

git status # Check the repository status. You can view the current branch and whether there are
unsaved, uncommitted, and unpushed changes on the branch.

git checkout master # Switch to the master branch. Run the command when the current branch is not the
master branch.

Step 4 Create a file in the local repository folder and name the file fileFor708206208.

Step 5 Add the new file to the staging area using Git Bash.
git add fileFor708206208

Step 6 Commit the operation using Git Bash.

git commit -m "fix #708206208 Task01" #/ Use the fix keyword to associate task 01 whose ID is
708206208.

(11 NOTE
708206208 is the ID of taskO1.

Step 7 Push the committed content to the associated CodeArts Repo repository using Git
Bash.

git push

The command output varies depending on the repository structure. If 100% or
done is displayed for all steps, the push is successful. Push failures are usually
caused by invalid keys.

¢ git push
Enumera ing 7}7 je

Step 8 Verify the association result.

Go to the work item list and locate the work item whose ID is 708206208 to view
its details.

e The status is Resolved.

e An associated code commit record is added. You can click the commit ID to
view the details.

e A comment is automatically generated to describe the work item association.

--—-End

Associating Work Items with Code Committed on the Console

Step 1 Go to the repository details page.

Step 2 Create a file, enter a commit message starting with fix #708206209, and set
other parameters as required. The following figure shows an example.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 104

CodeArts Repo
User Guide 8 Using CodeArts Repo

Create File

Task02 Empty file (no template) - text

1 <project xnlns="http:// /POM/4.8.0" xmlns:xsi="http://§ " xsiischemalocation="
2 <nodelVersion>4.9.8¢/m

3 <groupld>YEBABSRIRTo </ groupTd>

4 <artifactld>javaMavendenod/artifactld>

5 <packaging>jar</packaging>

<version>1.8¢/version>
<namesmaven_deno</name>

8 <wrlyhttp: //EERREREER R ora </ur 1>

9 <dependencies> [
10 <dependency>

1 <groupId>junit¢/groupld>

12 <artifactId>junit</artifactid>

13 <version>3.8.1¢/version>

1 <scopedtest</scope>

15 </dependency>

16 </dependencies>

Commit Message

fix #708206209 task02| Tip

“You can use keywords "fix", "fixed", "resolve", "resolved”, and "close" to associate the file with a work item
in the project. For example, "fix #IR20230202018492 fix a bug.

You can add 1978 more characters,

“ cancel

(10 NOTE
708206209 is the D of task02.

Step 3 Click OK. The system performs the following operations on the CodeArts Repo
repository:
Writes content to the new file.

git add .
git commit -m "fix #708206209 Task02"

That is, the system commits the new file and associates it with the task02 work
item using the fix keyword in the -m parameter.

Step 4 Verify the association.
View the task02 work item.

e The status is Resolved.

e An associated code commit record is added. You can click the commit ID to
view the details.

e A comment is automatically generated to describe the work item association.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 105

CodeArts Repo
User Guide

8 Using CodeArts Repo

#708206209 task01

Description Associated (1) Person-Hour Details Operation History

Resolved

Associate with Work ltem(0)

<

* Assigned To! test

>

Code Commit Records(1)
Module

Want to know how to get started? Click here Sprint
Branch Commit Message Committed By Committed At Start Date:

c3cfdbf9 - fix Due Date
master test Apr 24, 2023 15:28:55
#708206209 task01

1

* Priority Middle
v Associated Code Branches(0)
* Severi Minor

Tag @ Notify

Attachment 3

+ Click to select a file, or drag and drop a file.

Comment

@ test (@ Apr 24, 2023 15:28:55 GMT+08:00

Message From CodeArts Repo:

test use command ‘fix' to commit code then the work item status has automatically changed to 'Resolved'

--—-End

8.8 Viewing

Repository Statistics

On the Repository Statistics tab page in the repository details, you can view the
following repository statistics:

Repository summary: Displays the Git repository capacity, LFS capacity, and
the number of branches, tags, repository members, and commits. You can
select a branch, and the statistical scope of commit trend, contributors, and
commit overview will be changed, but the repository summary will not be
affected.

Languages: displays the distribution of each language in the current branch of
the repository.

Commit trend: displays the commit distribution of a branch in the repository.

Contributors: collects statistics on the contribution of code committers in a
branch (number of commits and number of code lines).

Commit overview: collects statistics on code commits by different dimensions
(weekly, daily, and hourly).

(11 NOTE

e Developers and roles with higher permissions can trigger the collection of contributor
and language statistics.

e Due to resource restrictions, statistics can be collected for each repository ten times a
day.
e Each user can collect statistics for 1000 times a day.

e After the statistics are complete, the number of added and deleted code lines of each
user is displayed before the deadline.

e Commits (an operation that combines two or more historical development records) of
the merge node are not counted.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 106

CodeArts Repo
User Guide 8 Using CodeArts Repo

Contributors

8.9 Viewing Activities

Access a repository and click the Activities tab page to view all activities of the
current repository.
e Al This tab displays all operation records of the repository.

e Push: displays all push operation records of the repository, such as code push
and branch creation and deletion.

e Merge Request: displays the operation records of all merge requests in the
repository. You can click the sequence number of a merge request to view
details, such as creating, closing, re-opening, and merging a merge request.

e Review: This tab displays all review comments of the repository. You can click
the commit nID to view details such as adding or deleting comments.

e Member: displays the management records of all members in the repository,
for example, adding or removing members and editing member permissions.

(11 NOTE

e The displayed information includes the operator, operation content, and operation time.

e You can specify search criteria, such as the time range and operator, to filter and query
data.

8.10 Managing Repository Members

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 107

CodeArts Repo
User Guide 8 Using CodeArts Repo

8.10.1 IAM Users, Project Members, and Repository Members

Repository members come from project members of the project to which the
repository belongs. Project members mainly come from |IAM users of tenants. In
addition to the tenant to which the project creator belongs, IAM accounts of other
tenants can be invited to join the project. The following figure shows the
relationships between IAM users, project members, and repository members.

IAM user group of account 1

Members of project A in account 1

Repository members of project A in account 1

IAM user group of account 2 IAM user group of account 3 IAM user group of account n

Table 8-8 Mapping between project roles and repository roles

Project Role Repository Role

Project manager Administrator

Developer Developer

Test manager Viewer

Tester

Participant

Viewer

O&M manager

Custom role The repository role can be set as a
committer, developer, or viewer by a project
creator.

8.10.2 Configuring Member Management

You can manage repository members on the Members tab page. Only the
repository creator (owner) and administrator can manage repository members.
Other members can only view the repository member list. The following procedure
shows how to configure member management.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 108

CodeArts Repo
User Guide

8 Using CodeArts Repo

(11 NOTE

Currently, CodeArts Repo only allows you to import project members as repository
members. For details about how to add project members or modify project member roles,
see Member Management.

Automatically Synchronizing Project Members to the Repository

Configure Member Role Synchronization to synchronize project roles to the
repository. For details about the synchronization policies, see Table 8-9.

Repository Members

Member Role Synchronization

B o

Allow developers 10 access e repository AllOW VIewers 10 access e repository

Table 8-9 Member role synchronization

Administrator(creator)

Item Project Role Repositor | Allowed Operation
y Role
—_—— Project manager Administr | —
ator
Allow User-defined Committe | @ Set the role as a
developers project role r committer.
to access the (Com.ml‘tter e Set the role as a developer
repository permission))
e Set the role as a viewer.
e Remove the member.
Developer Developer | e Set the role as an
administrator.
e Settheroleasa
committer.
e Set the role as a viewer.
e Remove the member.
Custom role e Set the role as a developer
(deve.loper e Set the role as a viewer.
permission)
e Remove the member.
Allow Test manager Viewer Remove the member.
viewers to
access the Tester
repository Participant
Viewer
Custom role
(viewer
permission)

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 109

https://support.huaweicloud.com/eu/usermanual-projectman/devcloud_hlp_00026.html

CodeArts Repo
User Guide

8 Using CodeArts Repo

(11 NOTE

e By default, a project manager is the repository administrator. If you want to move the
project manager out of the repository, you need to adjust the role of the project
manager in the project settings.

e If you select a policy in Member Role Synchronization, related users added to the
project are automatically synchronized to the repository.

e If you deselect policies in Member Role Synchronization and click Synchronize, related
members will be removed immediately.

e On the repository list page, you can select Synchronize Roles to modify the repository
role mapped from a custom project role as a project creator.

Synchronize Roles

Follows

Operation

Manually Adding Project Members to the Repository

NOTICE

Manually configured repository members will be overwritten by Automatically
Synchronizing Project Members to the Repository. You are advised to use either

of the two functions.

Click Add Member. On the displayed dialog box, select a member from the
member list of the corresponding project and add the member to the repository. A
default repository role is assigned to the member based on the project role. For
details about the role mapping, see the following table.

Table 8-10 Mapping between project roles and repository roles

Project Role

Repository Role

Allowed Operation

Project manager

Administrator e Set the role as a committer.
(default) e Set the role as a developer.
Developer e Set the role as an administrator.

Set the role as a committer.
Remove the member.

Developer

Administrator

Set the role as a committer.
Set the role as a developer.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 110

CodeArts Repo
User Guide

8 Using CodeArts Repo

Project Role

Repository Role

Allowed Operation

Developer e Set the role as an administrator.
(default) e Set the role as a committer.

e Set the role as a viewer.

e Remove the member.
Viewer e Set the role as a committer.

e Set the role as a developer.
e Remove the member.

Test manager

Tester

Participant

Viewer

O&M manager

Viewer (default)

Remove the member.

Custom role

Committer e Set the role as a committer.
e Set the role as a developer.
e Set the role as a viewer.
e Remove the member.
Developer e Set the role as a developer.

e Set the role as a viewer.
e Remove the member.

Viewer (default)

Remove the member.

(11 NOTE

If the project-level member list is empty, the project does not have members other than the

repository creator. Add project members.

8.10.3 Repository Member Permissions

Repository Creation Permission

Table 8-11 Repository creation permission of project roles

Operation

Project Manager

Developer Others

Create
repositories

v

J -

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

CodeArts Repo
User Guide

8 Using CodeArts Repo

Repository Operation and Viewing Permission

Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Code | Access v v oY v |V o|-
code
online
Edit code | v v v v X If a protected branch is set,
online permissions of this protected
branch are used instead.
Downloa | v v oY v |V o|-
d code
online
Local v v oY v oV -
code
clone
Local v v Y v | x | If a protected branch is set,
code permissions of this protected
push branch are used instead.
Fork | Fork a v v Y v | v | When you select a project for
project the Fork repository, only the
projects for which you have
the project-level developer
permission or higher are
displayed.
Mem | Add a v v | x X x |-
bers | member
Edit a v v X X X -
member
Remove |+ v X x x |-
a
member
Approve |V v oox x |x |-
a
member

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 112

CodeArts Repo

User Guide 8 Using CodeArts Repo
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
View a v v oY v |V o|-
member
MR Create v v Y v o |x |-
an MR
View an |V v oY v |V o|-
MR
Merge v v | x | x | 1. If a protected branch is
an MR set, permissions of this
protected branch are used
instead.
2. Developers cannot merge
MRs by default. MRs can
be merged by developers
only when the target
branch is set as a
protected branch and
developers have MR
permissions.
Edit an v v Y x | x | 1. The MR creator can
MR perform this operation,
(Open) but the MR creator must
be a developer or role
Closean | ¥ VoY o with higher permissions.
MR 2. The + role can operate all
Re-open |V v v x X MRs, including MRs
an MR created by others and MRs
created by yourself.
Edit a X X X X X -
merged
MR
(Merged)

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 113

CodeArts Repo

User Guide

8 Using CodeArts Repo

Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r
Cherry- v v Y v | x | Atemporary branch
pick an containing cherry-pick is
MR automatically generated. The
(generat cherry pick operation fails in
e an MR) the following scenarios:

1. If all branches are
protected branches and
the operator does not
have the permission to
create a branch (push),
the operation fails.

2. If the branch policy is
configured and the
temporary branch does
not meet the policy, the
operation fails.

Revert v v Y v | x | Atemporary branch

an MR containing revert is

(generat automatically generated. The
e an MR) revert operation fails in the

following scenarios:

1.

If all branches are
protected branches and
the operator does not
have the permission to
create a branch (push),
the operation fails.

If the branch policy is
configured and the
temporary branch does
not meet the policy, the
operation fails.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

114

CodeArts Repo

User Guide 8 Using CodeArts Repo
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Cherry- v v Y v | x | If a protected branch is set,
pick an permissions of this protected
MR branch are used instead.
(No MR
is
generate
d, and
new
code is
directly
merged
into the
related
branch.)
Revert v v Y v oo x
MR
(No MR
is
generate
d, and
new
code is
directly
merged
into the
related
branch.)

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 115

CodeArts Repo

User Guide 8 Using CodeArts Repo
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Delete v v Y v | x . The source branch can be
the deleted only when MR is
source performed between
branch repository branches and
the source branch is not
protected.

. If the Fork repository has
committed an MR to the
source repository, the
source branch of the
source repository cannot
be deleted.

. A protected source branch
cannot be deleted.

Vote v v Y v oY . All repository members

scoring can score the MR even if

in the they are not configured as

scoring scorers of this MR.

mechanis . By default, developers and

m roles with lower
permissions can score
from -1 to 1, and
committers and roles with
higher permissions can
score from -2 to 2.

Review v v Y v |V | Only MR reviewers can

in the review the MR.

approval

mechanis

m

Approve |V v Y x | x | Only MR approvers and v

in the roles can review MRs.

approval

mechanis

m

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

116

CodeArts Repo

User Guide 8 Using CodeArts Repo
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Delete X X X X X No one can delete an MR.
an MR
Score | Score v v Y v | x | The repository configuration
prevails:

1. If Developers and above
is selected, developers or
users with higher
permissions can give a
score.

2. If Committers and above
is selected, committer or
or users with higher
permissions can give a
score.

Revie | Add a v v v v |V | You can add a review for
ws review which you have permission to
view MR.
Edit a X X X x X Only reviewers can edit their
review reviews.
Delete a | x X x X X
review
Reply a v v oY v | Y | You can reply a review for
review which you have permission to
view.
View a v v Y v |V | You can view all reviews for
review which you have permission to
view MR.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 117

CodeArts Repo

User Guide 8 Using CodeArts Repo
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Resolve a | v v Y X x | 1. When the severity of
review review is suggestion: MR
creator, reviewer,
committers and roles with
higher permission can
operate.

2. When the severity of
review is minor, major or
fatal: Reviewer,
committers, and roles with
higher permission can
operate, but the MR
creator (Even if with
supported roles) cannot
operate.

Pipeli | Trigger v v Y v | x | The pipeline execution plan is

ne an MR enabled.
pipeline

Branc | Createa |V v Y v | x | 1. If Developers cannot

hes branch create branches is

selected, this operation

Edit a \ VoY Voo cannot be perfgrmed.
branch .

2. If Committers cannot
create branches is
selected, this operation
cannot be performed.

Deletea |+ v Y v | x | A protected branch cannot be

branch deleted by any user.

View a v v Y v oY |-

branch

Tag Createa |V v Y v | x | If Developers cannot create

tag tags is selected, this
operation cannot be
performed.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 118

CodeArts Repo

User Guide 8 Using CodeArts Repo
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Deletea |V v oo x X x | A protected tag cannot be
tag deleted by any user.
View a v v Y v |V |-
tag
Settin | View v v oo x x |x |-
gs settings
Edit v v X X X -
settings
Rename |V X X X x |-
a
repositor
y
Transfer |V x x x x -
repositor
y
ownershi
P
Repos | Createa |V v oY v oIx |-
itory | repositor
y
Deletea |+ v x x x -
repositor
y
Display a | v v Y v | v | The repository is displayed for
repositor all repository members.
y
Activi | View v v Y v |V o|-
ties updates

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 119

CodeArts Repo
User Guide 8 Using CodeArts Repo

Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep

Assoc | View v v v v VYo
iated | associate
work | d work
items | items

Hom | View v v v v v -

e home
Repos | View the |V v oY v o|Y |-
itory | statistics
statis
tics Update |V v Y v o |x |-
the
statistics
SSH View and | v v v v v -
and edit
HTTP
settin
gs
IP View and | x X X X X The administrator can view
addre | edit and edit the information.
ss
white
list
{1 NOTE

For details about how to set a protected branch policy, see 9.3.1 Protected Branches.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 120

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Configuring CodeArts Repo

9.1 General Settings

9.2 Repository Management
9.3 Policy Settings

9.4 Service Integration

9.5 Security Management

9.1 General Settings

9.1.1 Repository Information

To view and modify the repository information, choose Settings > General
Settings > Repository Information on the repository details page.

The settings take effect only for the repository configured.

Only the repository administrator and owner can view the page and have the
setting permission.

Repository Description: remarks field when the template is open-source (public
example template). It is used to facilitate search.

Visibility

e Private: Only repository members can access and commit code.

e Public: Read-only for visitors and hidden from repo lists and search results.

e Public template: The repository will be shared as a template in the whole
site. Template Title and Author are mandatory

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 121

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Repository Information

Repository Name

Repository Description

Visibility

QO FPrivate Public Public template

Only Repository Members can access and commit code.

9.1.2 Notifications

CodeArts Repo Notifications

To

set notifications, choose Settings > General Settings > Notifications on the

repository details page.

The settings take effect only for the repository configured.

Only the repository administrator and owner can view the page and have the
setting permission.

Email Notification

(10 NOTE

If all notification types in the notification settings are disabled, the system sends an email
notification to the creator or administrator by default when you perform the following
operations:

e When a repository is created, an email notification is sent to the creator or
administrator by default.

e When a non-repository member applies to join a repository, an email notification is sent
to the creator by default.

e When a repository is frozen or closed, an email notification is sent to the creator or
administrator by default.

Freeze a repository: Send email notifications to the repository owner and
administrators by default. This cannot be manually configured.

When a service is disabled or a repository is in arrears, the repository is
frozen. No operation can be performed on the frozen repository.

Within 30 days after a repository is frozen, you can renew the repository or
enable services to unfreeze the repository.

Close a repository: Send email notifications to the repository owner and
administrators by default. This cannot be manually configured.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 122

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Closing a repository is equivalent to permanently deleting the repository.
When the repository is frozen for more than 30 days, the repository will be
closed.

Delete a repository: Send email notifications to the repository owner,
administrator, committer, developer, and viewer. This can be manually
configured.

Capacity warning: This parameter is not enabled by default. You can
manually set the capacity warning threshold as required. When the capacity
of a single repository exceeds the threshold, the system emails the repository
owner, administrators, committers, and developers. The warning email is sent
only once unless you update the warning settings.

Open: Push states of the merge request (including create and re-open) to
specified roles by email. By default, the email notification is disabled. You can
enable it to send email notifications to scorers, approvers, reviewers, and
mergers.

Update: Push code updates of the branch associated with the merge request
to specified roles by email. By default, the email notification is disabled. You
can enable it to send email notifications to scorers, approvers, or reviewers.

Merge: Send email notifications to the MR creator by default. You can
determine whether to also send an email notification to the merger.

Review: Send email notifications to the MR creator by default. You can also
disable the notification.

Approve: Send email notifications to the MR creator by default. You can
manually set not to send the notification.

Comment: Send email notifications to the MR creator by default. You can
also disable the notification.

Resolve Comment: Send email notifications to the MR creator by default. You
can manually set not to send the notification.

(11 NOTE

If no email notification is received, go to Notifications to check whether the email and
email notifications are enabled.

If you want to know repository changes in other ways than emails, you can choose Service
Integration > Webhooks and customize notifications in your own system (third-party
system).

CodeArts Notifications

CodeArts provides configurable notifications. On the CodeArts homepage, click
your username in the upper right corner. In the dialog box that is displayed, click
This Account Settings to configure notifications.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 123

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Preferences -
Theme&Layout>
Perzona
1D 2
This Account
User Center :
Settings
Tenant
2 ®
All Account CodeArts 1AM
Settings Console

Choose General Settings> Notifications. Enable or disable and email
notifications, and change the email address for receiving notifications.

You can also set a Do-Not-Disturb (DND) period so that you will not receive email

notifications within the specified period.

Notifications

Do-Not-Disturb

After do-not-disturb (DND) is enabled. you will not receive email notifications within the specified period.

Email Notifications

Email Address for Recelving Notifications: Edit Settings
© Enable
Disable

9.2 Repository Management

9.2.1 Repositories

To configure repository settings, you can choose Settings > Repository
Management > Repository Settings on the repository details page.

The default branch is the branch selected by default when you enter the current
repository and is also the default target branch when you create a merge request
(MR). When a repository is created, the master branch is used as the default

branch and can be manually adjusted at any time.

The settings take effect only for the repository configured.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

124

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Only the repository administrator and repository owner can view this page and
have the setting permission. After the setting is complete, you can click Commits
for the setting to take effect.

Table 9-1 Parameter description

Parameter

Description

Do not fork a repo.

This parameter is not selected by default. If this
parameter is selected, all users cannot fork the
repository.

Developers cannot
create branches.

This parameter is not selected by default. If this
parameter is selected, the developer role cannot create
branches.

NOTE

A whitelist can be set to prevent developers who are not in
the whitelist from creating branches.

Developers cannot
create tags.

This parameter is not selected by default. If this
parameter is selected, the developer role cannot create
tags.

Committers cannot
create branches

This parameter is not selected by default. If this
parameter is selected, the committer role cannot create
branches.

Pre-merge

By default, this option is not selected. After this option
is selected, the server automatically generates MR pre-
merging code. Compared with running commands on
the client, this operation is more efficient and simple,
and the build result is more accurate. This option
applies to scenarios that have strict requirements on
real-time build.

Branch name rule

e The value cannot exceed 200 bytes.

e The name cannot start with -, refs/heads/, or refs/
remotes/, and cannot contain spaces or special
characters such as brackets ([), backward slashes
(\), angle brackets (<), tildes (~), circumflexes (©),
colons (:), question marks (?), asterisks (*),
exclamation marks (!), parentheses (()) , single
quotation marks ('), quotation marks ("), and
vertical bars (]). It cannot end with ./ or .lock.

e The name of a new branch cannot be the same as
that of an existing branch or tag.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 125

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Parameter Description

Tag name rule e The value cannot exceed 200 bytes.

e The name cannot start with -, refs/heads/, or refs/
remotes/, and cannot contain spaces or special
characters such as brackets ([), backward slashes
(\), angle brackets (<), tildes (~), circumflexes (),
colons (:), question marks (?), asterisks (*),
exclamation marks (!), parentheses (()) , single
qguotation marks ('), quotation marks ("), and
vertical bars (]). It cannot end with ./ or .lock.

e The name of a new tag cannot be the same as that

of an existing branch or tag.

(11 NOTE

e Byte: a group of adjacent binary digits. It is an important data unit of computers and is
usually represented by B. 1 B = 8 bits.

e Character: a letter, digit, or another symbol that represents data and information.

Configuring MR Pre-combination

After an MR is created, you can customize the scripts for downloading plug-ins
such as WebHook and CodeArts Pipeline. That is, you can control the downloaded
code content.

e If you select MR Pre-merge, the server will generate a hidden branch,
indicating that the MR code has been merged. You can directly download the
code that already exists in the hidden branch.

e |If MR Pre-merge is not selected, you need to perform pre-merge on the
client. That is, download the code of the MR source branch and MR target
branch and perform pre-merge on the build executor.

Command

The pre-merge command on the server is as follows:

git init
git remote add origin ${repo_url clone/download address}
git fetch origin +refs/merge-requests/${repo_MR_iid}/merge:refs/${repo_MR_iid}merge

If this option is not selected, you can perform the pre-merge operation on the
client and create a clean working directory on the local host. The command is as
follows:

git init

git remote add origin ${repo_url clone/download address}

git fetch origin +refs/heads/${repoTargetBranch}.refs/remotes/origin/${repoTargetBranch}

git checkout ${repoTargetBranch}

git fetch origin +refs/merge-requests/${repo_MR_iid}/head:refs/remotes/origin/${repo_MR_iid}/head

git merge refs/remotes/origin/${repo_MR_iid}/head --no-edit

Advantages

In scenarios that have high requirements on real-time build, for example, one MR
may start the build of dozens or hundreds of servers, and the pre-merging result

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 126

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

generated by the local or client may be inconsistent with that generated by the
server. As a result, the build code cannot be obtained accurately and the build
result is inaccurate. Pre-merging on the server can solve this problem in real time.
In addition, the script building command is simpler, and developers or CIEs can
better use it.

9.2.2 Space Freeing

To enable space freeing, you can choose Settings > Repository Management >
Space Freeing on the repository details page.

With space freeing, you can free up storage space to increase the read and write
speed for the current repository by running background clean-up tasks, including
compressing files and removing unused objects. Space freeing is similar to the
garbage collect (gc) function in Git.

Only the repository administrator and owner can view the page and have the
setting permission.

(11 NOTE

It is recommended that you perform this operation once every month.

9.2.3 Synchronization

To configure repository settings, you can choose Settings > Repository
Management > Sync Settings on the repository details page.

This function is used to synchronize the customized settings of the current
repository to other repositories. This function supports cross-project
synchronization but does not support cross-region synchronization.

This function is used for a repository forked based on the repository because the
settings are not automatically copied during forking. For details, see Forking a
Repository

Developers or roles with higher permissions can view this page. However, only the
repository administrator and owner have the operation permission.

Sync Settings

Repository To Be Synced

Settings To Be Synced Select All

Repository Management Repositary Settings

Policy Settings Protected branch | Commit Rules
Service Infegration Webhooks

Security Management IP Address Whitelist

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 127

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Adding a Synchronization Repository

NOTICE

Ensure that the network connection is normal before synchronizing a repository.

e For public platforms, CodeArts Repo supports access to code repositories.

e For private repository platforms on the intranet, ensure that the network
connection between CodeArts Repo and your repository is normal.

Step 1 Click Add Repository. In the dialog box that is displayed, select the target

repository.
Select Repository Settings
W MsM229 - Q
MSh-fest MSM-229 GREER
b M3M-229
Bl MSM-229
gt
B M3M-229
8 MS-1208 MSM-229
b
Selected 0 n
“ Cancel

Step 2 Click OK. The repository synchronization is complete.

----End

(11 NOTE

Common Failure Causes
e Failed to synchronize Commit Rules: No commit rules are set for the source repository.

e Failed to synchronize protected branches: The branch names of the source repository
and target repository are different.

9.2.4 Submodules

Background

A submodule is a Git tool used to manage shared repositories. It allows you to
embed a shared repository as a subdirectory in a repository. You can isolate and
reuse repositories, and pull latest changes from or push commits to shared
repositories.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 128

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

You may want to use project B (a third party repository, or a repository developed
by yourself for multiple parent projects) in project A, and use them as two

separate projects. Submodules allow you to clone a Git repository as a

subdirectory into another Git repository while keeping commits separate.

The submodules are recorded in a file named .gitmodules, which records the
information about the submodules.

[submodule "module_name"] # Submodule name

path = file_path # File path of the submodule in the current repository (parent repository).

url = repo_url # Remote repository IP address of the submodule (sub-repository).

In this case, the source code in the file_path directory is obtained from repo_url.

Using the Console

e Creating a submodule
- Entry 1:

You can add a submodule to a folder in the repository file list.

Click and select Create Submodule, as shown in the following figure.
[Home </» Code i) Merge Requests 0 (: Ren
[0 MB Files >0 Commits ¥ 0 Branches > 0 Tags
master v =
repo / + Crex
Q
repo
SIC D
b3 .gitignore (1 Create File

Mi README.md

pom.xmi

- Entry 2

Lz Create Directory

{; Create Submodule

& Upload File

You can create a submodule on the Code tab page

ot o
Al

Click
following figure.

Ié

and select Create Submodule, as shown in the

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

129

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

[E Home <I» Code 1) Merge Requests 0 (% Reviews [Associate

0 MB Files o0 Commits ¥ 0 Branches > 0Tags T, Comparison
master v
repo /|| + Create A|
Q

Ie {1 Create File
src —

[3 Create Directory

b3 gitignore B {} Create Submodule
Mi README.md A Upload File
pom xml '
- Entry 3:

You can create a submodule in the repository settings.

Choose Settings > Repository Management > Submodules > Create
Submodule.

- Remarks:
You can use one of the preceding methods to create a submodule.

Configure the following parameters and click OK.

Table 9-2 Parameters of creating a sub-repository

Parame | Description
ter

Submod | Select a repository as the submodule.
ule

Submod | Select the target branch of the submodule to be
ule synchronized to the parent repository.
Branch

Submod | The storage path of the sub-repository in the parent
ule Path | repository. Use slashes (/) to separate levels.

Details | Remarks for creating a submodule. You can find the
operation in the file history. The value contains a maximum
of 2000 characters.

(10 NOTE

After the creation is complete, you can find the submodule (sub-repository) in
the corresponding directory of the repository file list. The icon on the left of the

corresponding file is 8.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 130

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

e Viewing, synchronizing, and deleting a submodule

Choose Settings > Repository Management > Submodules. On the
displayed page, repository administrators can view, synchronize, and delete
submodules.

e Synchronizing deploy keys

If a submodule is added on the Git client, the repository administrator needs
to synchronize the deploy key of the parent repository to the submodule on
the Settings > Repository Management > Submodules page. In this way,
the submodule can also be pulled during the build of the parent repository.

Using the Git Client
Step 1 Add a submodule.

git submodule add <repo> [<dir>] [-b <branch>] [<path>]

Example:

git submodule add git@***.***.com:****/WEB-INF.git

Step 2 Pulling a repository that contains a submodule
git clone <repo> [<dir>] --recursive

Example:

git clone git@***.***.com:****/WEB-INF.git --recursive

Step 3 Update a submodule based on the latest remote commit
git submodule update --remote

Step 4 Push updates to a submodule.

git push --recurse-submodules=check
Step 5 Delete a submodule.
1. Delete the entry of a submodule from the .gitsubmodule file.

2. Delete the entry of a submodule from the .git/config file.

3. Run the following command to delete the folder of the submodule.
git rm --cached {submodule_path} # Replace {submodule_path} with your submodule path.

(1] NOTE

Omit the slash (/) at the end of the path.

For example, if your submodule is stored in the src/main/webapp/WEB-INF/
directory, run the following command:

git rm --cached src/main/webapp/WEB-INF
--—-End

9.2.5 Repository Backup

To configure remote backup, choose Settings > Repository Management >
Repository Backup on the repository details page.

The repository can be backed up in either of the following modes:

e Backup to Online Repository: Back up the repository to another region.

This mode imports a repository from a region to another region. For details,
see Importing an External Repository.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 131

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

e Backup to Local PC: Back up the repository to your local PC.

You can use the HTTPS or SSH clone mode. The clone command is generated
as shown in the following figure. You only need to paste the command to the
local Git client and run it. (Ensure the repository connectivity.)

Only the repository administrators and owners can view this tab page and
have permissions.

Repository Backup

Backup to Online Repository

Target Region |

Backup to Local PC

Copy the following command, run it in the Git command line, and back up the complete repository. Using HTTPS

9.3 Policy Settings

9.3.1 Protected Branches

To configure protected branches, you can choose Settings > Policy Settings >
Protected Branches on the repository details page.

The settings take effect only for the repository configured.

Only the repository administrator and owner can view the page and have the
setting permission.

Functions of Protected Branches
e Ensure branch security and allow developers to use MRs to merge code.
e Prevent non-administrators from pushing codes.
e Prevent all forcibly push to this branch.
e Prevent anyone from deleting this branch.

(11 NOTE

When you create a repository, the repository automatically sets the default branch
(generally master) as the protection branch to ensure repository security.

After you set a protected branch, the protected branch cannot be used as the target branch
for code merging.

Editing Protected Branches

You can set a protected branch. The procedure is as follows:

e Click Create Protected Branch. In the Added Protected Branch dialog box,
select a branch from the drop-down list or manually enter a branch name or
wildcard character, select the corresponding permissions or assign permissions
to users, and click OK.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 132

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

e Click ¢ to modify the configuration of the protected branch.

e (lick o to delete the protected branch.

Protected Branches

Administ trator Commil itter Developer (@) Whitelist members Q Create Protected Branch

Branch Name Allowed to Push Allowed to Merge Operation

e Configure the whitelist: To assign permissions to one or more members of an
unauthorized role, you can select Push and Merge under Members and click
the drop-down list to add the members to the trustlist.

Create Protected branch

* Branch

Administrator Committer Developer
Push
Merge (v @]
Members
Fush
Merge
(O NOTE

e Only developers and users with permissions higher than developers have the Can push
and Can merge permissions.

e If Administrator, Committer, and Developer are selected for Can push, all these roles
have the permissions. In this case, you do not need to select Can push or Can merge
under Members.

e You can create, edit, and delete protected branches in batches.

9.3.2 Protected Tags

To configure protected tags, you can choose Settings > Policy Settings >
Protected Tags on the repository details page.

Only the repository administrator and owner can view the page and have the
setting permission.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 133

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

You can set protected tags to prevent production tags or important tags from
being deleted. The procedure is as follows:

Click Create Protected Tag. In the Added Protected Tags dialog box, select a tag
from the To be protect tag drop-down list or create a wildcard, select No one,
Developers + Committer + Maintainers, or Maintainers from the Allowed to
create drop-down list, and click OK.

e
Versionto namimsraors

e When a developer, committer and administrator, or administrator is allowed to create
protected tags, or other members cannot create or delete the tags. If no one can create
protected tags, all members cannot create or delete the tags.

e Click o to delete protected tags.

9.3.3 Commit Rules

To configure commit rules, you can choose Settings > Policy Settings > Commit
Rules on the repository details page.

On the Commit Rules page, you can establish a series of code commit verification
and restriction rules to ensure code quality. The settings take effect only for the
configured repository.

Only the repository administrator and owner can view the page and have the
setting permission.

Table 9-3 Parameters on the Commit Rules page

Parameter Description

Reject unsigned | Only signed commits can be pushed to the repository.
commits CodeArts Repo signature mode:

When performing online commit in CodeArts Repo, use the

following format to compile and submit information:
commit message # Enter the customized submission information.
This is a blank line.
Signed-off-by: User-defined signature # Enter the user-defined signature after
Signed-off-by:

Git client signature mode:

When running the commit command on the Git client, you
need to add the -s parameter.

git commit -s -m " <your commit message>"

You need to configure the signature and email address on
the client in advance.

Tags cannot be | After this option is selected, tags cannot be deleted on the
deleted page or by running commands on the client.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 134

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Parameter

Description

Prevent
committing
secrets

Confidential files include ssh_server_rsa, id_rsa, and
id_dsa.For details, see Description of Confidential Files.

Prevent git
push -f

Indicates whether users can run the git push -f command on
the client to push code.

git push -f indicates that the current local code repository is
pushed to and overwrites the code in CodeArts Repo.

In general cases, you are not advised using this command.

Creating a Commit Rule

The repository administrator and repository owner can create a commit rule for a
branch of the repository. Only one commit rule can be set for each branch.

(11 NOTE

Priority matching mechanism of commit rules:

1. The target branch preferentially matches the configured commit rules.

2. If no rule is exactly matched, the first rule fuzzily match is used.

3. If no rule is fuzzily matched, the default rule is used.

Table 9-4 Parameters

Parameter

Description

Rule Name

This parameter is mandatory. The value contains a maximum
of 200 characters.

Branch

This parameter is mandatory. Select a branch from the drop-
down list or create a regular expression. This field supports a
maximum of 500 characters.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 135

https://support.huaweicloud.com/eu/codeartsrepo_faq/codeartsrepo_06_0029.html

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Parameter

Description

Commit rules

Parameters in this area are optional.

e Commit Message: This parameter is left empty by default,
indicating that the commit message is not verified, and any
parameter can be committed. This field supports a
maximum of 500 characters.

For example, you can set the format rule of the commit
message as follows:

TraceNo:(REQ[0-91{1,9}) (.\n|-\n) Author:.*(.|\n].\n) Description:.*

The following is a commit message that complies with the
rule:

TraceNo:REQ1234567 Author:**** Description:testpushfile

The following is a commit message that does not comply
with the rule:

new files

e Negative Match: This parameter is left empty by default,
indicating that the commit information is not verified, and
any parameter can be committed. This field supports a
maximum of 500 characters.

For example, you can set the format rule of the commit
message as follows:
TraceNo:(REQ[0-91{1,9}) (.\n|-\n)Author:.*(.|\n].\n) Description:.*

e Commit author: This parameter is left empty by default,
indicating that the commit author is not verified, and any
parameter can be committed. This field supports a
maximum of 200 characters.

The commit author can run the git config -l command to
view the value of user.name and run the git config --
global user.name command to set the value of user.name.
Example:

Rules for setting the commit author: ([a-z][A-Z]{3}) ([0-91{1,9})

e Commit author's email: This parameter is left empty by
default, indicating that the commit author email is not
verified, and any parameter can be committed. This field
supports a maximum of 200 characters.

The commit author can run the git config -l command to
view the value of user.email and run the git config --
global user.email command to set the email address.

Example:
Rules for setting the email of the commit author: @huawei.com$

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 136

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Parameter

Description

Basic
Attributes

Parameters in this area are optional.

e File Name That Cannot Be Committed: This parameter is
left empty by default, indicating that the file name is not
verified, and any file can be committed. You are advised to
use standard regular expressions to match the file name. By
default, the file path is verified based on the file name rule.
This field supports a maximum of 2000 characters.
Example:

Set File Name That Cannot Be Committed: (\.jar|\.exe)$

e Each File Size (MB): The default value is 50, indicating that
the push is rejected if the size of the added or updated file
exceeds 50 MB. The administrator can change the value
from 0 to 200.

NOTE

When a repository is created, the maximum size of a single file in the
default submission rule (default) is 200 MB. When a repository is

created, the recommended maximum size of a single file in the default
submission rule is 50 MB.

Binary Rules

Parameters in this area are optional.

These parameters are not set by default, indicating that binary
files can be uploaded. The size of a single file cannot exceed
the upper limit. Allow changes to binary files, Repo File
Whitelist, and Privileged User take effect only when Do not
allow new binary files is selected. If you select Allow
changes to binary files, binary files in modifiable state are
not intercepted and can be directly uploaded. Binary files can
be deleted without binary check.

e Do not allow new binary files (privileged users
excepted)

e Allow changes to binary files (privileged users excepted)

e Binary file trustlist (files that can be directly imported to the
database. This field supports a maximum of 2000
characters.)

e Privileged User (Max. 50 privileged users.)

Effective Date

Parameters in this area are optional.

Before being pushed, all commitments created after the date
specified by this parameter must match the hook settings. If
this parameter is left empty, all commitments are checked
regardless of the committing date.

(11 NOTE

You are not advised storing binary files in CodeArts Repo. Otherwise, the performance
and stability of the code repository will be affected.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 137

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Table 9-5 Examples of common regular expressions

Rule Examples
Single a, b, or ¢ [abc]
Characters other than a, b, or c [Aabc]
Lowercase letters ranging from a to z [a-Z]
Characters other than the range of a to z [Na-z]

Uppercase and lowercase letters in the range of a [a-zA-Z]
tozorAtoZ

Any single character

Either a or b alb
Any blank character \s
Non-blank character \S
Arabic numeral character \d
Non-Arabic numeral characters \D
Letters, digits, or underscores (_) \w

Characters other than letters, digits, or underscores | \W

(-

Match the content in parentheses (not capture) (...
Match and capture the content in parentheses (...)
No or one a a?
No or more a's a*
One or more a's a+
Three a's a{3}
More than three a's a{3,}
3to6a's a{3,6}
Beginning of text A
End of text $
Word boundary \b
Non-word boundary \B
Line breaker \n
Carriage return character \r
Tab key \t

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 138

CodeArts Repo

User Guide 9 Configuring CodeArts Repo
Rule Examples
Null string \O

9.3.4 Merge Requests

To configure MRs, you can choose Settings > Policy Settings > Merge Requests
on the repository details page.

Merge Requests applies to merge MRs. MRs can be merged only when all
configured MR conditions are met. You can select Score or Approval for Merge
Mechanism.

The settings take effect only for the repository configured. Only the repository
administrator and owner can view the page and have the setting permission.

Merge Mechanism

e Score: Code review is included. Based on scoring, the minimum merging score
can be set and the score ranges from 0 to 5. The code can be merged only
when the score and mandatory review meet pass conditions. When selecting
the scoring mechanism, you need to set the minimum score.

e Approval: Code review and merge approval are included. Code can be merged
only after the number of reviewers reaches gate requirements. You are
advised to configure branch policies when you select the approval
mechanism.

(11 NOTE

By default, Approval is used. You can manually switch to Score.

After the merge mechanism is switched, the workflows of the MRs are changed. However,
the early created MRs retain the previous merge mechanism.

Merge Conditions

Table 9-6 Parameters

Parameter Description

Merge after all After this parameter is selected, if Must resolve is
reviews are resolved. | selected as the review comment, a message Review
comment gate: failed is displayed and the Merge
button is unavailable. If it is a common review
comment, the Resolved button does not exist, the MR
is not intercepted by the merge condition.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 139

CodeArts Repo

User Guide 9 Configuring CodeArts Repo

MR Settings

Parameter

Description

Must be associated
with CodeArts Req

e Associate only one ticket number: If this
parameter is selected, one MR can be associated
with only one ticket number.

e All E2E ticket numbers pass verification: If this
parameter is selected, all associated E2E ticket
numbers must pass the verification.

e Branches to configure the MR policy: Multiple
branches can be added. You can manually enter
wildcard characters and press. Press Enter, for
example, *-stable or production/*.

Table 9-7 Parameters

Parameter

Description

Do not merge your
own requests

After this parameter is selected, the Merge button is
unavailable when you view the MRs created by
yourself. You need to ask the person who has the
permission to merge the MRs.

A repo administrator
can forcibly merge
code

The project creator and administrator roles have the
permission to forcibly merge MRs. If the merging
conditions are not met, these roles can click Force
Merge to merge MRs.

Continue with code
review and comment
after requests are
merged

After this parameter is selected, you can continue to
review and comment on the code that has been
merged the MR.

Mark the
automatically merged
MRs as Closed (If all
commits in the B MR
are included in the A
MR, the B MR is
automatically merged
after the A MR is
merged. By default, the
B MR is marked as
merged. You can use
this parameter to mark
the B MR as closed.)

o |[f this parameter is not selected, MRs that are
automatically merged are marked as merged.

e If this parameter is selected, MRs that are
automatically merged are marked as closed.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

140

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Parameter

Description

Cannot re-open a
Closed MR.

If this option is selected, the branch merge request
cannot be set back to Open after it is closed. Re-
open in the upper right corner is hidden.

fre—

This parameter is used for process control to prevent
review history from being tampered with.

Delete source branch
by default after the
MR is merged

After the merging, the source branch is deleted.
e A protected source branch cannot be deleted.

e This setting does not take effect for historical
MRs. Therefore, you do not need to worry about
branch loss.

Do not Squash

After this parameter is selected, the Squash button is
unavailable, and the entry for using this button is
unavailable in the MR.

Enable Squash merge
for new MRs

Squash merge means that when merging two
branches, Git squashes all changes on the merged
branch into one and appends them to the end of the
current branch as merge commit, which simplifies
the branch. The only difference between squash
merge and common merge lies in the commitment
history. For common merge, the merge commitment
on the current branch usually has two commitment
records, while squash merge has only one
commitment record.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 141

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Merge Method

Table 9-8 Parameters

Parameter

Description

Merge commit

If this parameter is selected, a merge commit is
created for every merge, and merging is allowed as
long as there are no conflicts. That is, no matter
whether the baseline node is the latest node, the
baseline node can be merged if there is no conflict.

e Do not generate Merge nodes during Squash
merge: If this parameter is selected, no merge
node is generated during the squash merging.

e Use MR merger to generate Merge Commiit: If
this parameter is selected, the commit information
is recorded.

e Use MR creator to generate Merge Commit: If
this parameter is selected, the commit information
is recorded.

Merge commit with
semi-linear history

If this parameter is selected, a merge commit is
recorded for each merge operation. However,
different from Merge commit, the commitment must
be performed based on the latest commit node of
the target branch. Otherwise, the system prompts the
developer to perform the rebase operation. In this
merging mode, if the MR can be correctly
constructed, the target branch can be correctly
constructed after the merge is complete.

Fast-forward

If this parameter is selected, no merge commits are
created and all merges are fast-forwarded, which
means that merging is only allowed if the branch
could be fast-forwarded. When fast-forward merge is
not possible, the user is given the option to rebase.

Configure Branch Policy

Click Create to set a merge policy for a specified branch or all branches in the

repository.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 142

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

(11 NOTE

Currently, branch policies can be set only for the Approval mechanism.
The following is an example of the branch policy priority:

e Assume that there are policies A and B in the repository and their branches are the
same. The system uses the latest branch policy by default.

e Assume that there are policies A and B in the repository. Branch a and branch b are
configured for policy A, and branch a is also configured for policy B. When a merge
request whose target branch is branch a is committed, the system uses policy B by
default.

If no branch policy is set in the approval mechanism, the default branch policy is used when
a merge request is committed. The branch policy can be edited and viewed but cannot be
deleted. The policy configuration is as follows:

e Branches: *. By default, all branches are used and cannot be modified.
e Reviewers Required: The default value is 0.

e Approvals Required: The default value is 0.

e Reset approval gate: This option is selected by default.

e Reset review gate: This option is selected by default.

e Add approvers/reviewers only from the following ones: This option is not selected by
default.

e Enable pipeline gate: This option is not selected by default.
e Mergers: This parameter is left blank by default.
e Approvers: This parameter is left blank by default.

e Reviewer: This parameter is left blank by default.

Table 9-9 Parameters

Parameter Description
Branches Set policies for all branches or a branch.
Reviewers Required Set Reviewers Required. When the number of

reviewer who give pass meets the Reviewers
Required, the gate is passed. 0 indicates that the
review gate is optional. However, if an MR is rejected
by a reviewer, it fails the gate.

Approvals Required Set Approvals Required. When the number of
approvals who give pass meets the Approvals
Required, the gate is passed. 0 indicates that the
approval gate is optional. However, if an MR is
rejected by an approver, it fails the gate.

Reset approval gate When code is re-pushed to the source branch of an
MR.

Reset review gate When code is re-pushed to the source branch of an
MR.

Add approvers/reviewers | If this option is selected, you can configure the list of
only from the following | New Approvers and New Reviewers. If you want to
ones add additional members, you can only add members
from the lists.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 143

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Parameter Description

Enable pipeline gate If this option is selected, before the merge, you need
to pass all pipeline gates. This rule integrates the Cl
into the code development process.

Mergers The list of mandatory mergers can be configured.
When a merger request is created, the list is
automatically synchronized to the merger request.

Approvers The list of mandatory reviewers can be configured.
When a merge request is created, the list is
automatically synchronized to the merge request.

Reviewer The list of mandatory reviewers can be configured.
When a merge request is created, the list is
automatically synchronized to the merge request.

(1 NOTE

Example of a mandatory reviewer list:

e The Reviewers Required is 2. If the list of mandatory reviewers is empty, the 2
approvers in the list of New Reviewers give pass and the gate is passed.

e The Reviewers Required is 2. If the list of mandatory reviewers is not empty, the gate
can be approved only after at least one reviewer in the list give pass.

9.4 Service Integration

9.4.1 E2E Settings

Repo uses this E2E tracing setting to log code merge reasons, such as
implementing a requirement, fixing a bug, or completing a work item. Association
is enabled by default.

Integrated Systems

It integrates with CodeArts Req and uses work items in CodeArts Req to associate
with code commits.

(11 NOTE

The repositories of Kanban projects do not support E2E settings.

Integration Policies

(Optional) Specify available selection conditions when you associate with a work
item.

Excluded States: States of work items that CANNOT be associated with.

Associable Types: Types of work items that can be associated with.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 144

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Applicable Branches: Branches to comply with preceding restrictions.

Automatic ID Rules Extraction

Automatic ID Rules Extraction (automatically extracting ticket numbers based on
code commitment information) are as follows:

e ID Prefix: (Optional) A maximum of 10 prefixes are supported, for example,
[Trouble ticket number or Requirement ticket number].

(11 NOTE

If ID Prefix, Separator, and ID Suffix are not empty, the automatic ticket number
extraction function is enabled by default.
e Separator: (Optional) The default value is a semicolon (;).

e ID Suffix: (Optional) The default value is a newline character.
(10 NOTE

e The values of ID Prefix, Separator, and ID Suffix cannot be the same.

o |f Separator is left empty, the values of ID Prefix and ID Suffix cannot be two
semicolons (;;).

e If ID Suffix is left empty, the values of ID Prefix and Separator cannot be \n.

e The values of ID Prefix, Separator, and ID Suffix are matched in full character
mode. Regular expressions are not supported.

Examples

Step 1 Configure E2E settings.

1. Go to the target repository.

2. Choose Settings > Service Integration > E2E Settings. The E2E Settings
page is displayed.

ome <> Code erge Requests % Reviews ssociated Work Items 7 Repository Statistics i Activities & Members ettings
EH /> Cod 11 Merge R 1 &R [Associated Work I 71 Repository Stati Activit 2 Membs 11 Setti

E2E Settings

General Settings
Repo uses this E2E tracing setting to log code merge reasons, such as implementing a requirement, fixing a bug, or completing a work item. Re

Repositery Management v llems

Policy Settings - Integrated Systems

| service Integration 4 (:
| E2E Settings
Webhooks CodeArts Req

- Use work items in CodeArts Req

3. Configure the following integration policies and click Submit.
Applicable Branches: Select the target branch, for example, branch.
ID Prefix: user-defined prefix, for example, Incorporated requirements.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 145

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Integration Policies

Excluded States States of work items that CANNOT be associated with
Associable Types Types of work items that can be associated with. e g Story/Task/Bug

Applicable Branches Branches to comply with preceding restrictions

branch

Automatic ID Rules Extraction
1D Prefix Separator 1D Suffix

Incorporated requirements

Submit Save and Enable

Step 2 Create a work item.

1. Click the target project name to access the project.

2. On the current Work Items tab, click Create Work Item and choose Task
from the drop-down list box. The page for creating a work item is displayed.

Work ltems Sprints Statistics Reports

Backlog Bug =+ Create Work Item All wo

Id Subjs¢

Epic
Feature

Story

Task

Bug

3. Enter a title, for example, Sprint 1.
Retain the default values for other parameters. Click Save.

Plans Work ltems Sprints Statistics Reports

All ~ Backlog Bug + Create Work ltem All work items = Q Tracker Epic |

Id Subject Closed On Status

I 708635317 Iteration 1 - New

Step 3 Create a File.
1. Go to the repository list page and click the name of the target repository.

2. On the Code tab, click Create and choose Create File from the drop-down list
box. The page for creating a file is displayed.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 146

CodeArts Repo

User Guide 9 Configuring CodeArts Repo

[Home «¢»Code | 7 Merge Requests 0 (: Reviews (3 Associated

0.11 MB Files <1 Commits P 1Branches ©0Tags 1.1 Comparison
master
Q
IEf | (3 Creaie File
com
c 3 Create DITEC'[OF‘-.I'
-] .gitignore N {§ Create Submodule
-] g
M} README.md & Upload File
Mi R

build.xm

3. Enter the following information, retain the default values for other
parameters, and click OK.

File name: user-defined file name, for example, Sample_Code.
File content: user-defined file content.

Commit message: Enter the prefix and work item number in the E2E settings,

for example, 708635317.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

147

CodeArts Repo

User Guide 9 Configuring CodeArts Repo
Creats File
Sample_Code Empty file (no template) v fed hased

1 <project nane="javahntDeno" basedir="." default="nain"s
1 <property envirament="emy" />
3 <oraperty nane="src.dir" value="can"f>
4
5 <property nane="build.dir" velue="build"/>
6 <praperty nane="classes. dir" value="${build. dir}/classes" >

(praperty nane="Jar.dir" value="${build.dir}/far">
8 <property name="report.dir" value="${build. dir}/junitreport’ />
g ctaskdef nane="findougs" classnane="edu.und, s, findougs anttask. FindBugsTask"/>

2 <path id="application” locatlon="§{jar.dir}/${ant.project.nane}. ar" />

1 <property name="nain-class" value="con.gdd.hellokorld" />

138 ctanget names"clean">
19 «delete dir="${build.dir}'/>
L] ([tanget>

Commit Message
Incorporated requirements 708635317 Tip
You can Use keywords ‘", "ied", "resoive", "resolved, and "close" o associate the fle with

You can add 1965 more chaaclers. awork ftem inthe project For example, " #R20230202018492 fx a bug.

n Cancel

Step 4 Extract the ticket number when creating a merge request.

Switch to the Merge Requests tab and click New.

2. Select Dev as the source branch and master as the target branch, and click
Next. The page for creating a merge request is displayed.

At this point, the work item is automatically extracted to the merge request.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 148

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Create Merge Request

From Scrumo0girepo Dev into Scrumoosirepo

« Title

Add [WIP] to the title, to prevent a Work In Progress (WIP) merge request from being merged before itis ready

€« 2 HB = E & @ G B @ N

Tip

master

Preview

Directly edit a work item in the associated work item. You can also use keywords fix, fixed, resolve, resolved, and close plus a

number sign (%) in the description to associate with a work item. For example, fix #1R20230202018492 fix a bug

To set work item status and transition, go to " automatic transition ", To set E2E tracing for integration, go to " E2E Seitings "

Mergers

Reviewers

Approvers

Settings

Delete source branch after merge
Squash

Work ftems

Iteration 1

[}
(]

--—-End

9.4.2 Webhooks

Introduction to Webhook

Developers can configure URLs of third-party systems on the Webhook page and
subscribe to events such as branch push and tag push of CodeArts Repo based on
project requirements. When a subscription event occurs, you can use a webhook to
send a POST request to the URL of a third-party system to trigger operations
related to your system (third-party system), such as popping up a notification
window, building or updating images, or performing deployment.

If you want to email repository change notifications, you can configure

Notifications in General Settings.

Configuring Webhooks

To configure webhooks, you can choose Settings > Service Integration >

Webhooks on the repository details page.

The settings take effect only for the repository configured.

Only the repository administrator and owner can view the page and have the

setting permission.

Table 9-10 Parameters for creating a webhook

Param | Description
eter
Name | Custom name.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

149

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Param
eter

Description

Descri
ption

Description of the webhook.

URL

(Mandatory) Provided by the third-party CI/CD system.

Token
type

Used for webhook interface authentication of third-party services. The
options are as follows:

e X-Repo-Token
e X-Gitlab-Token
e X-Auth-Token

Token

Used for third-party Cl/CD system authentication. The authentication
information is stored in the HTTP request header.

Event
type

The system can subscribe to the following events:
e Push events

- If Push events is selected, Regular Expression for Branch
Filtering is displayed.
NOTE

Regular Expression for Branch Filtering: The default value is .*,
indicating that all branches are matched. Max. 500 characters.

The regular expression for branch filtering must comply with regular
expressions.
- This event is triggered when code is updated in CodeArts Repo,
such as code update in LFS files or submodules, and code pushed
online or on a local Git client.

e Tag push events
This event is triggered when a tag is created or deleted.

e Merge request events
- This event is triggered when a merge request is created.

- This event is triggered when a merge request is updated. For
example, when someone updates the code content, merge
request status (closed or re-opened), merge request title or
description, merger, and work items, deletes the source branch,
and updates the squash.

- This event is triggered when a request is merged.
e Comments

- This event is triggered when a review is added. For example, add
a review for a file on the Files and Commits submenus of the
Code tab page, or on the Files Changed submenu of the Merge
Requests tab page.

- This event is triggered when a comment is added on the
Commiits details page or on the Details page of Merge
Requests tab page.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 150

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

(11 NOTE

e A maximum of 20 webhooks can be created for a repository.

e You can configure a token when setting up a webhook. The token will be associated
with the webhook URL and sent to you in the X-Repo-Token header.

9.5 Security Management

9.5.1 Deploy Keys

The deploy key is the public key of the SSH key generated locally. However, the
deploy keys and SSH keys of a repository cannot be the same. Deploy keys allow
you to clone repositories with read only access over SSH. They are mainly used in
scenarios such as repository deployment and continuous integration.

(11 NOTE

e Multiple repositories can use the same deploy key, and a maximum of 10 deploy keys
can be added to a repository.

e The difference between an SSH key and repository deploy key is that the former is
associated with a user and PC and the latter is associated with a repository. The SSH key
has the read and write permissions on the repository, and the deploy key has the read-
only permission on the repository.

e The settings take effect only for the repository configured.
e Only the repository administrators and owners can view this tab page and configure
deploy keys.

To configure the deploy keys, choose Settings > Security Management > Deploy
Keys on the repository details page. The deploy key is a key that has only the
read-only permission on the repositories.

Click Add Deploy Key to create a deploy key. For details about how to generate a
local key, see Generating and Configuring an SSH Key.

9.5.2 IP Address Whitelists

About IP Address Whitelists

e An IP address whitelist includes an IP address segment and several access
control settings. The whitelist restricts users' access, upload, and download
permissions to enhance repository security.

e The IP address whitelist can be configured only for repositories whose visibility
is Private. Repositories whose visibility is Public or Public template are not
supported.

IP Address Whitelist Formats

IPv4 and IPv6 are supported. The following table lists the three formats of IP
address whitelists.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 151

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Table 9-11

IP address whitelist formats

Format

Description

Specified
IP
Address

This is the simplest IP address whitelist format. You can add the IP
address of your PC to the whitelist, for example, 100.*.*.123.

IP address
segment

If you have multiple servers and their IP addresses are consecutive
or the IP address of your server dynamically changes in a network
segment, you can add the IP address segment, for example,
100.**.0 to 100.*.*.255.

CIDR
block

e When your server on a LAN uses the CIDR, you can specify a 32-
bit egress IP address of the LAN and the number of bits for a
specified network prefix.

e Requests from the same IP address are accepted if the network
prefix is the same as the specified one.

Configuring IP Address Whitelists

IP address whitelists can be created in the following levels:

(1 NOTE

If the Private repository for which the IP address whitelist has been configured is switched
to a Public or Public template repository, you can also upload and download code on the
CodeArts Repo page or Git client.

IP Address whitelists. The whitelists are set for all cloud services. IP addresses that are not
in the whitelist are blocked upon login. For details, see Access Control.

IP address whitelist for repository. It allows access only from IP addresses in
the whitelist to a specific repository. To set the whitelist, choose Settings >

Security Management >IP Address Whitelist (IPv4 and IPv6 addresses are
supported. For details, see IP Address Whitelist Formats).

Allowed to access the repository: Only whitelisted IP addresses and the
repository creator can access the repository.

Allowed to download code : Only whitelisted IP addresses can download
code online and clone code locally.

Allowed to commit code: Only whitelisted IP addresses can modify and
upload code online, or commit code locally. Code-based build project
orchestration and YAML file synchronization are not affected.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 152

https://support.huaweicloud.com/eu/usermanual-iam/iam_07_0003.html

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Accounts. Click =

(11 NOTE

e Commit code: Create, edit, delete, upload and rename files, create and delete
directories, submodules, branches, and tags, resolve code conflicts, create and
merge MRs, cherry-pick, revert, use LFS storage, and rebase.

e Download code: Download a single file and branches, tags, repositories and

backup repositories.

e Local download: Download code through SSH and HTTPS, and clone repository

through deploying keys.

e Local commit: Commit code through SSH and HTTPS.
e Repository synchronization is not affected by the IP address whitelist.

e o = |@

Freferences e

Theme&Layout >,

Persona

ID ®

User Center Billing Center

Tenant

)

CodeArts
Console

All Account
Settings

Tenant-level IP address whitelist: To set IP address whitelists for repositories
of all accounts from a tenant, log in to the CodeArts Repo repository list page,
click the alias in the upper right corner, and choose All Account Settings >
Repo > Whitelists for All Accounts, as shown in the following figure. The
configuration rules are the same as those of repository-level IP address
whitelists.

2

This Account
Settings

®

LAM

Only tenant accounts have permissions to configure Whitelist for All

next to Add Address and select Prioritize this List. For
details about the logic of cloning the Git client or downloading the repository
source code on the Ul, see the following table.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 153

CodeArts Repo

User Guide

9 Configuring CodeArts Repo

Acco | Configur | Configur | Priority
unt- | e e
level | Tenant- | Reposit
Whi | level ory-
telis | Whitelis | Level
t t Whitelis
Prior t
itize
d
(Prio
ritiz
e
This
List)
Enab | x X All IP addresses are allowed.
led
X v The repository-level whitelist prevails.
x The tenant-level whitelist prevails.
v The intersection of the tenant-level whitelist
and repository-level whitelist prevails.
Disa | x x All IP addresses are allowed.
bled
x v The repository-level whitelist prevails.
v X The tenant-level whitelist prevails.
v v The repository-level whitelist prevails.

9.5.3 Risky Operations

To configure risky operations, choose Settings > Security Management > Risky
Operations on the repository details page.

Only the repository administrators and owners can view this tab page and
configure risky operations.

Risky operations are as follows:

e Transfer repository ownership: The ownership of a repository can be
transferred to another person in the repository but cannot be transferred to a
viewer or custom role.

e Delete repository: The repository cannot be recovered after being deleted.

e Rename repository: After renaming a repository, check the configuration
related to the repository name in a timely manner.

9.5.4 Watermarks

On the repository details page, choose Settings > Security Management >
Watermark. The watermark content consists of your account name and current

time.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

154

CodeArts Repo
User Guide

9 Configuring CodeArts Repo

Only repository administrators and owners can view this tab page and configure
the watermark function.

Watermarks will be displayed on code repository pages to reduce the risk of code
asset leakage.

Watermark

Watermarks protect your company's core assets. Use them to deter and track dissemination by photos, screenshots, and other unauthorized means

@

9.5.5 Repository Locking

When a new software version is ready for release, administrators can lock the
repository to protect it from being compromised. After the repository is locked, no
one (including the administrators) can commit code to any of its branches.

To lock a repository, choose Settings > Security Management > Repository
Locking on the repository details page.

Only the repository administrator and owner can view the page and have the
setting permission.

After the administrator locks the repository, no one can use the repository
functions in Table 9-12.

Table 9-12 List of functions that cannot be executed

Tab Page Function

Code If the repository is locked, the following functions cannot be
performed on the Code tab page:

e C(reate, edit, delete, rename, and upload a file

e C(Create and delete a directory

e C(Create and delete a submodule

e Cherry-Pick and revert a file

e Add, delete, edit, reply, and resolve a review and comment

Branch & If the repository is locked, the following functions cannot be
Tag performed on the Branch or Tag subtab of the Code tab page:

e C(reate, edit, and delete a branch, merge branches, and sett
protected branches.

e C(Create and delete a Tag

Merge If the repository is locked, the following functions cannot be
Requests performed on the Merge Requests details page:

e Create, edit, close, re-open, and merge a merge request
e Cherry-Pick and revert a merge request
e Resolve a code conflict

e Add, delete, edit, reply, and resolve a review comment

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 155

CodeArts Repo
User Guide 9 Configuring CodeArts Repo

Tab Page Function

Repository & | If the repository is locked, the following functions cannot be
Members performed:

e Fork a repository
e Add, delete, edit, and approve a member

Settings If the repository is locked, the following functions cannot be
performed on the Settings tab page:

e Repository settings

e Submodules

e Deploy key synchronization
e Space freeing

e Policy settings (All)

e Service integration (All)

(1 NOTE

After the repository is locked, changes to project members will be synchronized to the
repository, affecting repository members.

9.5.6 Audit Logs

To view audit logs, choose Settings > Security Management > Audit Logs on the
repository details page.

Only the repository administrators and owners can view this tab page.

Audit logs record only changes to repository attributes. Check daily development
activities such as MRs, reviews, and member changes from repository dynamics.

You can filter logs by time segment, operator, operation type, or log information.
The operation types include repository information, submission rule, merge
request, and merge request policy.

Audit Logs

Q AllTypes * AllMembers

Operator Type Log

ofected branch
03 GMT+08:00

configured
Protected Branches

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 156

CodeArts Repo
User Guide

10 Submitting Code to the CodeArts Repo

1

O Submitting Code to the CodeArts
Repo

10.1 Creating a Commit

10.2 Transmitting and Storing a File in Encryption Mode
10.3 Viewing Commit History

10.4 Pushing Code to CodeArts Repo Using Eclipse

10.1 Creating a Commit

Background

Prerequisites

Procedure

In code development, developers usually clone code from CodeArts Repo to the
local PC to develop code locally, and the commit the code to CodeArts Repo after
completing the phased development task. This section describes how to use the
Git client to commit the modified code.

Git Installation and Configuration.
You have created a repository in CodeArts Repo. For details, see Overview.

You have set the SSH keys or HTTPS password. For details, see Setting SSH
Key or HTTPS Password for CodeArts Repo Repository

4. You have Cloned the CodeArts Repo Repository to the Local Host. For details,
see Overview.

Generally, developers do not directly develop code in the master branch. Instead,
they create a feature branch based on the master or develop branch, and develop
code in it. Then they commit the feature branch to CodeArts Repo, and merge it
into the master or develop branch. The preceding operations are simulated as
follows:

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 157

CodeArts Repo
User Guide

10 Submitting Code to the CodeArts Repo

Step 1

Step 2

Step 3

Step 4

Go to the local repository directory and open the Git client. Take Git Bash as an
example. The principles and commands of other Git management tools are the
same.

Create a feature1001 branch based on the master branch, switch to the created
branch, and run the following command in the master branch:
git checkout -b feature1001 #Shown in 1 in the following figure.

This command creates a branch and then switches to the branch.

If the command is successfully executed, 2 in the following figure is shown. You
can run the ls command to view the files of the branch (as shown in 3 in the
following figure), which are the same as those of the master branch currently.

1
aturelool’

Modify code in the feature branch (code development).

Git supports Linux commands. In this case, the touch command is used to create a
file named newFeature1001.html, indicating that the developer has developed
new features locally and a new file is added into the local code repository.

touch newFeature1001.html
Run the Is command again to view the created file.

Run the add and commit commands to add the file from the working directory to
the staging area, and then commit the file to the local repository. (For details, see
1 Overview.)

You can also run the status command to check the file status.

1. Run the status command. The command output shows that a file in the
working directory is not included in version management, as shown in 1 in
the following figure.

2. Run the add command to add the file to the staging area, as shown in 2 in
the following figure.
git add . # Period (.) means all files, including hidden files. You can also specify a file.

3. Run the status command. The command output shows that the file has been
added to the staging area and is waiting to be committed, as shown in 3 in
the following figure.

4. Run the commit command to commit the file to the local repository, as
shown in 4 in the following figure.
git commit -m " <your_commit_message>"

5. Check the file status again. If no file to be committed exists, the commit is
successful, as shown in 5 in the following figure.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 158

CodeArts Repo
User Guide

10 Submitting Code to the CodeArts Repo

" to include in what will be committed)

nothing added to it but untr d Tiles present (

$ git add .

Step 5 Push a local branch to CodeArts Repo.

git push --set-upstream origin feature1001

Run the preceding command to create a branch that is the same as your local
feature1001 branch in CodeArts Repo, and associate them and synchronize the
branch.

origin indicates the alias of your CodeArts Repo. The default alias of a directly
controllable repository is origin. You can also use the repository address.

emote branch 'featurell0l’ from 'origin'.

(11 NOTE

If the push fails, check the connectivity.
e Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@********.com

If the command output contains connect to host ******** com port 22: Connection
timed out, your network is restricted from accessing CodeArts Repo. Contact your
network administrator.

Check the SSH key. If necessary, regenerate a key and configure it on the CodeArts Repo
console. For details, see 3.2 SSH Keys. Alternatively, check whether the HTTPS
password is correctly configured.

Check the IP address whitelist. If no whitelist is configured, all IP addresses are allowed
to access the repository. If a whitelist is configured, only IP addresses in the whitelist are
allowed to access the repository.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 159

CodeArts Repo

User Guide 10 Submitting Code to the CodeArts Repo
Step 6 View the CodeArts Repo repository branch.
Log in to CodeArts Repo and go to your repository. In the Files tab page, you can
switch to your branch in CodeArts Repo.
{0 NOTE
If the branch you just committed is not displayed, your origin may be bound to another
repository. Use the repository address to commit the branch again.
Step 7 Create a merge request. For details, see 8.5.1 Managing MRs. Notify the approver

to review the request and merge the new feature into the master or develop
branch.

--—-End

10.2 Transmitting and Storing a File in Encryption

Mode

CodeArts Repo uses git-crypt for encrypted storage and transmission of
confidential and sensitive files.

About git-crypt

git-crypt is a third-party open-source software that can transparently encrypt and
decrypt files in the Git repository. It can encrypt and store specified files and file
types. Developers can store encrypted files (such as confidential information or
sensitive data) and shared code in the same repository and pull and push them
like in a common repository. Only the person who has the corresponding file key
can view the content of the encrypted files, but others are not restricted to read
and write unencrypted files.

git-crypt allows you to encrypt only specific files without locking the entire
repository, facilitating team cooperation and ensuring information security.

Using Key Pairs for Encryption and Decryption on Windows

Step 1
Step 2

Install and initialize Git.

Download the latest Windows-based git-crypt and save the downloaded .exe file
to the cmd folder in the Git installation directory. The following figure uses the
default Git Bash installation path of Windows Server 2012 R2 Standard (64-bit)
as an example.

Put the .exe file in the folder. You do not need to run it.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 160

https://github.com/oholovko/git-crypt-windows/releases

CodeArts Repo
User Guide

10 Submitting Code to the CodeArts Repo

C\Program Files\Githcm d|

B git

B git-crypt
git-gui
gith

B git-Ifs

4| start-ssh-agent

| start-ssh-pageant

Step 3 Generate a key pair.

1.

Open Git Bash and go to the local repository, as shown in 1 in the following
figure.

Run the following command to generate a key pair, as shown in 2 in the
following figure.

git-crypt init

Export the key file. In this example, the key file is exported to the C:\test
directory and named KeyFile. Run the following command, as shown in 3 in

the following figure.
git-crypt export-key /c/test/keyfile

MINGW64:/c/test/20201123

% od 20201123

¥ git-crypt export-key fc/test/KeyFil

Check whether the key is generated in the file path where the key is exported.
In this example, check whether the KeyfFile file exists in the C:\test directory,
as shown in the following figure.

B < system.. > test

REE Date modified Type

. KeyFile 21/03/2022 11:01 Text Document

The computer containing the key file can decrypt the corresponding encrypted
file.

Step 4 Configure the encryption scope for the repository.

Create a file named .gitattributes in the root directory of the repository.

Open the .gitattributes file and run the following command to set the

encryption range.
<file_name_or_file_range>: filter=git-crypt diff=git-crypt

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 161

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Four examples are as follows:

FT/file01.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.

* java filter=git-crypt diff=git-crypt # The .java file is encrypted.

G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.

ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.

.gitattributes - Notepadbli-

git
ForTest File Edit Format View Help

Fr FT/file0l filter=git-crypt diff=git-crypt
images *, java filter=git-crypt diff=git-crvpt

erc G filter=glt-crypt diff=git-crypt
otiribut ForTest/#t filter=git-crypt diff=git-crypt
| .gitattributes

|| .gitignare

| 1java

[Gitoo1.ue
2| pom.xml

| | README.md

(1 NOTE

e If the system prompts you to enter the file name when you create the .gitattributes
file, you can enter .gitattributes. to create the file. If you run the Linux command to
create the file, this problem does not occur.

e Do not save the .gitattributes file as a .txt file. Otherwise, the configuration does not
take effect.

Step 5 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

MINGW64:/c/test/20201123

L o i o O o
Z M M M MMM mm

gitattrib
option

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

You can run the add, commit, and push commands to push the repository to
CodeArts Repo. In this case, the encrypted files are pushed together.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 162

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Encrypted files are stored in CodeArts Repo as encrypted binary files and cannot
be viewed directly. If you do not have a key, you cannot decrypt it even if you
download it to the local computer.

(11 NOTE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.

In team cooperation, -f (forcible execution) has certain risks and may cause the members'
work output to remain unchanged. Exercise caution when using -f.

Step 6 Decrypt the file.

1. Ensure that the git-crypt file exists in the Git installation path on the local
computer.

CAProgram Files\Gitcm |::||

] it
B git-crypt
git-gui
gith:

B git-Ifs

| start-ssh-agent

| start-ssh-pageant

Clone the repository from CodeArts Repo to the local host.

3. Obtain the key file for encrypting the repository and store it on the local
computer.

. System... » test

MNarne Date modified Type

I KeyFile) Text Document

Go to the repository directory and right-click Git Bash.

5. Run the decryption command. If no command output is displayed, the

command is successfully executed.
git-crypt unlock /C/test/KeyFile # Replace /C/test/KeyFile with the actual key storage path.

----End

Encrypting and Decrypting a File in GPG Mode on Windows
Step 1 Install and initialize Git.

Step 2 Download the latest Windows-based git-crypt and save the downloaded .exe file
to the cmd folder in the Git installation directory. The following figure uses the
default Git Bash installation path of Windows Server 2012 R2 Standard (64-bit)
as an example.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 163

https://github.com/oholovko/git-crypt-windows/releases

CodeArts Repo

User Guide 10 Submitting Code to the CodeArts Repo

Put the .exe file in the folder. You do not need to run it.

. ChProgram Files\Githcm |::||

w7 git
| =] git-crypt
git-gui
gitk
5 git-lfs
start-ssh-agent
start-ssh-pageant

Step 3 Download the GPG of the latest version. When you are prompted to donate the

open-source software, select 0 to skip the donation process.

0S Where Description
Windows Gpgdwin Full featured Windows version of GnuPG
download sig Simple installer for the current GnuPG
download sig Simple installer for GhuPG 7.4
os X Mac GPG Installer from the gpgtools project

GnuPG for 05 X Installer for GnuPG
Debian Debian site GnuPG is part of Debian
RPM rpmfind RPM packages for different OS
Android Guardian project Provides a GnuPG framework
VMS antinode.info A port of GnuPG 1.4 to OpenVMS

RISCOS home page A port of GnuPG to RISC OS

Double-click to start the installation. Click Next to complete the installation.

Step 4 Generate a key pair in GPG mode.

1. Open Git Bash and run the following command:
gpg --gen-key
2. Enter the name and email address as prompted.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

164

https://www.gnupg.org/download/

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

vare Foundation, Inc.
stribute 1t.

rator/.gnupg’ created
gnupg/pubring. kbx”’
or a full featured key

Real name: gpgTest
Email addr :
You selected th U
"gpgTest <gpgTest@huahua. com>

Change (N)ame, (E)mail, or (0)kay/(Quit?

3. Enter o as prompted and press Enter. The dialog boxes for entering and
confirming the password are displayed.

Pinentry >

Flease enterthe passphrase to
protect your new key

Passphrase: “

OK Cancel

The password can be empty. To ensure information security, you are advised
to enter a password that complies with the standard (this password is
required for decryption).

4. |If the following information is displayed, the GPG key pair is generated
successfully.

public and secret key created and signed.

2 2020-11-24 [SC] [expires:

072 2020-11-24

Step 5 Initialize the repository encryption.

1. Open Git bash in the root directory of the repository and run the following

command to initialize the repository:
git-crypt init

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 165

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

% cd 20201124

2. Run the following command to add a copy of the key to your repository. The
copy has been encrypted using your public GPG key.
git-crypt add-gpg-user USER_ID
USER_ID can be the name, email address, or fingerprint that uniquely
identifies the key, as shown in 1, 2, and 3 in the following figure in sequence.

public and secret key created and signed.

rsa3072 2020-11-24 [SC] [expires: 2022-11-24]
71EQAD
Test <gpgTest@huahua.com> g
[expires: 2022-11-24]

After the command is executed, a message is displayed, indicating that
the .git-crypt folder and two files in it are created.

MINGW64:/c/dev/test/20201124

el: pagp
n, Om, OFf, 1u

Step 6 Configure the encryption scope for the repository.

1. Go to the .git-crypt folder in the repository.

2. Open the .gitattributes file and run the following command to set the

encryption range.
<file_name_or file_range>: filter=git-crypt diff=git-crypt

Four examples are as follows:

FT/fileO1.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.

*java filter=git-crypt diff=git-crypt # The .java file is encrypted.

G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.

ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 166

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

keys .gitattributes - Notepad

L gitattributes File Edit Format View Help

Do not edit this file. To specify the files to encrypt, create your own
.zitattributes file in the directory where vour files are.

+ lfilter 'diff

*, zpz binary

FT/file0l. txt filter=git-crvpt diff=git-crypt

*, java filter=zit-crypt diff=zit-crypt

G* filter=git-crvpt diff=zit-crvpt

ForTest/+ filter=git-crypt Hiff=zit-crypt

3. Copy the .gitattributes file to the root directory of the repository.
Step 7 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

MINGW64:/c/dev/test/20201124

ot ot
MMM

T+

t

t

ed
e

te
[=
e
e

+

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

You can run the add, commit, and push commands to push the repository to
CodeArts Repo. In this case, the encrypted files are pushed together.

Encrypted files are stored in CodeArts Repo as encrypted binary files and cannot
be viewed directly. If you do not have a key, you cannot decrypt it even if you
download it to the local computer.

(11 NOTE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.

In team cooperation, -f (forcible execution) has certain risks and may cause the members'
work output to remain unchanged. Exercise caution when using -f.

Step 8 Export the key.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 167

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

1. Lists the currently visible keys. You can view the name, email address, and

fingerprint of each key.
gpg --list-keys

st/20201124 (master)

2. Run the gpg --export-secret-key command to export the keys. In this
example, the gpgTest key is exported to drive C and named Key.
gpg --export-secret-key -a gpgTest > /c/key # -a indicates that the key is displayed in text format.
During the execution, the system prompts you to enter the key password.
Enter the correct password.

No command output is displayed. You can view the key file in the
corresponding directory (drive C in this example).

3. Send the generated key to the team members to share the encrypted file.

Step 9 Import the key and decrypt the file.

1. To decrypt files on another computer, you need to download and install git-
crypt and GPG based on Git. For details, see the previous steps in this section.

2. Clone the corresponding repository to the local host.

3. Obtain the key of the corresponding encrypted file. For details about how to
export the key, see the previous step. In this example, the obtained key is
stored in drive C.

4. Go to the repository, open Git Bash, and run the import command to import
the key.
gpg --import /c/key
[c/Key is the key path and user-defined key name in this example. Replace them with the actual
ones.
During the import, the system prompts you to enter the password of the key.
If the import is successful, the following figure is displayed.

5. Run the unlock command to decrypt the file.
git-crypt unlock
During the decryption, a dialog box is displayed, prompting you to enter the
password of the key. If no command output is displayed after you enter the
correct password, the decryption is successful.

fo/fdewD0l

§ git-crypt unlock

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 168

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Step 10 View the file before and after decryption.
----End

Application of git-crypt Encryption in Teamwork

In most cases, a team needs to store files that have restricted disclosure in the
code repository. It can use CodeArts Repo, Git, and git-crypt to encrypt some files
in the distributed open-source repository.

Generally, Key pair encryption can meet the requirements of restricting the
access to some files.

When a team needs to set different confidential levels for encrypted files, the GPG
encryption can be used. This encryption mode allows you to use different keys to
encrypt different files in the same repository and share the keys of different
confidential levels with team members, restricting file access by level.

Installing git-crypt and gpg on Linux and macOS
Installing git-crypt and gpg on Linux

e Linux installation environment

Software Debian/Ubuntu RHEL/CentOS Package
Package

Make make make

A C++11 compiler (e.g. | g++ gcc-c++

gcc 4.9+)

OpenSSL development | libssl-dev openssl-devel

files

e In Linux, install git-crypt by compiling the source code.
make
make install

Install git-crypt to a specified directory
make install PREFIX=/usr/local

e In Linux, install GPG by compiling the source code.
./configure
make
make install

e Install git-crypt using the Debian package.
The Debian package can be found in the debian branch of the project Git
repository.
The software package is built using git-buildpackage, as shown in the
following figure.

git checkout debian
git-buildpackage -uc -us

e Install GPG using the build package in Debian.
sudo apt-get install gnupg

Install git-crypt and GPG on macOS.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 169

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

e Install git-crypt on macOS.

Run the following command to install git-crypt using the brew package
manager.
brew install git-crypt

e Install GPG on macOS.
Run the following command to install git-crypt using the brew package
manager.
brew install gpg

10.3 Viewing Commit History

CodeArts Repo allows you to view details about the commit history and related
file changes.

You can view the commit history on the History tab page of the Files or
repository dynamics. You can click a commit record to view the committer,
commit number, parent node, number of comments, and code change
comparisons.

initial commit

You can comment on a commit or reply a comment.

Comments

S 2 H B = @ @ QB @

You can click the icon in the following figure to switch the horizontal or vertical
display of code change comparison. You can click Show All to view the full text of
the files involved in the commit.

< Show A = Settings

Settings

Change Display E

lgnore Space

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 170

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

10.4 Pushing Code to CodeArts Repo Using Eclipse

Background

You can install EGit on Eclipse so that Eclipse can be connected with CodeArts
Repo and be used for operations such as committing code from a local Git
repository to a remote one.

(11 NOTE

Only Eclipse 4.4 or later versions are supported.

e For the first push:
1. Create a repository on the local computer, that is, the local repository.
2. Commit the update to the local repository.

3. Pull the code from the server to the local repository, merge the code, and push the
repository to the server.

e |[f it is not the first push:
1. Commit the modified code to the local repository.

2. Pull the code from the server to the local repository, merge the code, and push the
repository to the server.

Step 1: Installing EGit on Eclipse
Eclipse 4.4 is used in the following procedure.

1. On the Eclipse toolbar, choose Help > Install New Software....

ClearCase Window

E
ide! Welcome

- - (7) Help Contents
&7 Search
Dynamic Help
ion
Key Assist., Ctrl+Shift+L

Tips and Tricks...
Cheat Sheets...

Check for Updates
[Install New Software...]

About Eclipse SDK

2. In the Install window displayed, click Add....
Set Location to https://download.eclipse.org/egit/updates.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 171

https://download.eclipse.org/egit/updates

CodeArts Repo
10 Submitting Code to the CodeArts Repo

User Guide
= Install = || =R
Available Software
) =

Select a site or enter the location of a site,

Work with: type or select a site =

Find mare software by warking with the ‘Available Software Sites' preferences,

type filter text
i | & Add Site]
| () Thed r
Mame: | EGit Local.. |
Locationt hitp:// oS o up dates Archive... |
@ [ok || Ccancel
Details

| Show only the latest versions of available software Hide items that are already installed

[¥] Group items by category What is already installed?

V| Comtact all update sites during install to find required software

3. Click OK. Then, click Next until the installation is finished.
Restart Eclipse after the installation.

Step 2: Configuring EGit on Eclipse
1. On the Eclipse toolbar, choose Window > Preferences > Team > Git >
Configuration.
Set Key to a registered username.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

172

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

=15 -

y Configuration

& Ganaral -

= Ant User Settings System Settings Repositery Settimgs =
@ Help

= Install/Update Location: C:\Dscumentsiey anfig

Aatematic Updatez

Available Software Si Add Entry. .

Key Value
i Juva . i .
& Run/Debug & Add a configuration entry rs(

e Add a configuration entry

= Tean
® CvE Flease enter o key, ¢ ¢ “user nans” and a value
File Content

= Gt

Commit Dialog Esv |user nsne
Configuration
Confirmation Dial:
History
Labal Dacerstions
Projects
Synchranize [0x][canea |
Window Cache
Tenored Basources
Models
& Usage Dats Collector
Validation
& I

. . [Eesltrre nefanltsj- L_ﬁ_l??l!']
@ Lo][cemca |

¥aluse

2. Click OK.

email indicates the bound email address. If the username is not set
previously, set it in this step.

Configuration L= -

User Settings |System Settings | Repositorv Settings|

Location: C:'\Documents and Setting=\amssy\ gitconfig
ey Value [E il
= user
email " 3 com
name w 3

Step 3: Creating a Project and Committing Code to the Local Git Repository

1. Create the git_demo project and the HelloWorld.java class.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 173

CodeArts Repo

User Guide 10 Submitting Code to the CodeArts Repo
[# Package Explorer 23 = [J] HelloWorld. java E-Z "
Bg | Y| ®/d
= k% R package com.test;

= # src
=-F3 com. test
#-[J] HelloWerld java
-2 JRE System Library [jdkl. 6.0 10
] E resources. jar — F '\Frogram B
)

public class HelloWorld !

= public static woid main/(!

:u- rt.jar — F:\Program Files\Js
—

E-ge jsse. jar = F:\Program Files
] :l'[i jea. jar = F:\Program Filesh]
£ 5; charsets, jar - F:\Frogram Fi }
] I;_l:- dnzns. jar - F:'\Program Files
- o localedata. jar - F:'Frogram
= E sunjce_provider. jar - F 'Fro
= i'-u_l; sunmscapl. Jar — F:'\Program [
. ewnnleeell far = F\Praceam 0

2. Share the git_demo project with the local repository.

[2 Packaze Euplorer 53 _ = B[[Hello¥orld. java 53
— = 4
2% & ® /v
nack a3t
= IEJ'FH Mﬂl;&
B@E Tt
=l Go Into
N .) “HelloWorld
Open in Hew Window
== ;
m Open Type Hierarchy T4 atic void main(String[]
Show In ALt+5hi £+ 4
&
& 55 Copy CtirliC
C: 5= Copy Qualified Hame
i ':ﬁ Paste CirltV¥
g U
& ¥ Delete Delete
@ B Remove From Contex Ctrld
* Build Path v
¥ Source ALt+5hi £145 4
B J¢ :
Refactor ALt+5hi £44T 4
W T4
Eag Import. . .
L3 Expart. ..
< Refresh s
Cloze Froject
Assign Workang Sets. ..
Run A= »
Debug As 4
¥alidate)
Compare With [3=

Share Project,

Restore from Local History. ..

3. In the Share Project window displayed, select Git.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 174

CodeArts Repo
User Guide

10 Submitting Code to the CodeArts Repo

& Share Project E'
Share Project

J-} A .

Select the repository plugz-in that will be used to share the selected project. @ I

Select a repozitory type:
o
B CYs

4. Click Next. The Configure Git Repository dialog box is displayed.

& Configure Git Repository

Configure Git Repository
Select repository location

Sl |
Eﬂse or crea# repository in parent folder of project

Project Location

Repository
7]l £it_dem E:\study\tools\eclipsetworkspacegit_demo git
v

L Finish I l Cancel J

5. Click Create Repository to create a Git repository.

The directory is in the untracked status, indicated by a question mark (?).
Choose Team > Commit... to commit code to the local repository.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 175

CodeArts Repo

User Guide 10 Submitting Code to the CodeArts Repo
ﬁ Package Explorer <) % = m| |1, HelloWorld java)]
3 <"='_,- % - + ."'l ww[l
1 =
=K - P T T nackage c
Hew 13
Go Into
] < Remote »
UPED in Eew-'lll'lndow .:Ibh S!ltqh '1'0 .
Open Type Hierarchy F4 m— vy b
Show In ALt+5hi £r+Y L4
|iZ| Copy Ctrl+C ot
5= Copy Qualified Wame #| Synchronize Workspace
:_." Paste Ctrl+V¥ b)
O Mer e
H Delete Delete ¥ Herge...
Remowe from Context trlt+al t+Sha f1+Down
Build Path "
Source ALt+Shi £145 [3P =
1 Refactor Al t+Shy £14T L4 Create Patch. ..
ly Fatch. ..
S] Apply Fatc
L3 Export. .. ¥ | Lgnore
-f.h Refresh FS = Add to Imdex
Cloze Project % Remove from Index
Assign Worlang Sets. .. EG Untrack
Bun As r {[)) Show in Repositories Yiew
Debug As 4 §_| Show in History
Validate
I} Disconnect
Compare With L |

6. In the Commit Changes dialog box displayed, set the commit message.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 176

CodeArts Repo
User Guide

10 Submitting Code to the CodeArts Repo

& Commit Changes

Commit Changes to Git Repository

C it =
ommit message L5 =
[First submission
Anthor: | T N 3e com? |
Eommltter.él 3 L i@ com? |
21| 4

Status Fath

[¥ [.claszpath

O % project

O] % binfeomftest/HelloWorld. class
[srefcomftest/Helloforld. java

Fush

[[JPush the changes to upstresm

@

l Commi t] I Cancel

Click Commit to commit the code to the local repository.

Mt - -

git_demo master]

ystem Library [jdkl 6.0_1C
Eﬁ resowrees. jar = F '\Frogram I

|"_,*|_|_; rt. jar - F:'\Program Files'Js
—

G jsse. jar - F:'Frogram Files'

jee. jar

:;. 'I.III.E',,! A Fj.ll:'.—..l'.:

@ charsets. jar — F:'"Frogram Fi

L S = [S = [
121

¥ o
|

Sunmscapl. jar

fous dnsns. jar — F:'\Frogram File:
IE localadata. jar = F "Frogram

fons sunjce_provider, jar - F'\FPro

F:\Program I

(o sunpkesll. jar - F:'Program I

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 177

CodeArts Repo
User Guide

10 Submitting Code to the CodeArts Repo

Step 4: Committing Code in the Local Repository to the Remote Git

Repository
1.

2.

3.

Create a repositor in CodeArts Repo. For details, see Overview.

Go to the repository details page and copy the repository URL.

Choose Team > Remote > Push... to push the code to the remote repository.

|# Package Explorer [

==

=
Hew
Go Into

Open in Hew Kindow
Open Type Hierarchy
Shox In

= Copy
F2 Copy Qualified Hame
T Baste

3 Delete

Euild Fath
Sowrce

1 Refactor

|
gig Inport. ..
£ Export. ..
& Refresh
Cloge Project

Assign Working Sets. ..

Bun As
Debug A=
Yalidate

Compare With
Replace With

- & 7w wrl

|J] HelloWorld. java 22

) Commit. . Ctrl+#

package c

F4
ALt+5hi fo+d

Ctrl+C

CerlsV
Delete

ALt+5ha fe45
ALt+5hi f44T

»

" Switeh To

m
s

& Full

Synchronize forkspace

% Merge. ..
=¥ Beset. ..
4 E
. 1 Rebase. .

» Create Patch. .
Apply Fatch

&) Ignore

g Add to Index
% Remove from Index
& Untrack
*| @ Show in Repositories View

» .
=) Show in Hastory

58 Disconnect

id <) Fetch From..

o

Advanced L1

g3 Fetch from Gerrit. ..

s Push to Gerrit. ..

3

In the Push to Another Repository dialog box, set the

parameters.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

178

CodeArts Repo

User Guide 10 Submitting Code to the CodeArts Repo

i@} Push to Another Repository = & (3]
Destination Git Repository |
“J 1
) il |
Enter the location of the destination repository. ‘' 4

-Conf‘igured remote repnsitory:
L:if_ ,_1:r'|,_;.__1':

@ Custom URI:

Location
URE: RSB (gt _deme | Local File..
Host: s T L R e

Repository path: /wdEEH%23/git_demo.git

Connection

Protocol: |hitps =

Port:

Authentication

User: e

Password: sssssssnes

Store in Secure Store

2 TR v | R

*=d

4. Click Next. The Push Ref Specifications dialog box is displayed.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

179

CodeArts Repo

User Guide 10 Submitting Code to the CodeArts Repo
Push Ref Specifications
Select refs to push lul I'_
_ﬁd

Add createfupaate specificati on

_S_ource ref:]]estina!‘.ion ref:

I"'refsfl\e-a.dsfmaste'r v | |refs/heads/master v| &F Add Spec i

Add delete ref specification

Remote ref to delete: | v| M idd spec

Add predefined specification
AHi Bontisurad Faxh Son: | Add ALl Branches Spec || Add ALl Tags Spec |

Specifications for push

Mode Source Ref Destination Ref Force Update Remove |

s Remowe M1 Spec

5. Click Add Spec.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 180

CodeArts Repo

User Guide 10 Submitting Code to the CodeArts Repo

Push Ref Specifications

Gl
Select refz to push. L __i
—

Add createfupdate specification

Source ref: Dastination ref:
o |

i |
#

v| g pdd Spec
il

Add delete ref specification

Remote ref to delete; & v| 8 4dd spec
#dd predefined specification

Add Configured Push Specs [Add A1l Branches Spec J [Add A1]1 Tags Spec]
Specifications for push

Mode Source Ref Destination Ref Force Update Remove
g Update refs/heads/master refs/heads/master [l ﬁ

[l'orcn Update ALl Spacs] [| g Remowe All Specs

@ [<Baek || Hext> || _ Finish || Cenca |

6. Click Next. The Push Confirmation dialog box is displayed.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

181

CodeArts Repo
User Guide 10 Submitting Code to the CodeArts Repo

Push Confirmation
Confirm following expected push result. L

Filnaster: master [new branch]

Hessage Details

Repository httpa:/¢codehub. ‘git_dema.git

DPush only if remote refs don't change in the mean time
DS]WI' final report dialog only when it differs from this confirmation report

@ e[Emia) [Cee]
7. Click Finish.

Pushed to https:/, _ /wenchao523/ git_demo.git

e Mnaster master [new branch]

Message Details

Repository https://codehub. ‘git_demo.git

8. Click OK.
Log in to the remote repository and check the submitted code.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 182

CodeArts Repo
User Guide

11 More About Git

More About Git

11.1 Using the Git Client

11.2 Setting Password-Free Access via HTTPS
11.3 Using the TortoiseGit Client

11.4 Use Cases on the Git Client

11.5 Common Git Commands

11.6 Using Git LFS

11.7 Git Workflows

11.1 Using the Git Client

Background

Prerequisites

Before using the Git client, you need to understand the workflow and master basic
operations, such as installing Git, creating and cloning repositories, adding,
committing, and pushing changes, creating, updating, and merging branches,
creating tags, and replacing local changes.

The Git client has been installed.

Usage Process

The following figure shows the basic process of using the Git client.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 183

CodeArts Repo
User Guide

11 More About Git

Install the Git client

Confgure the Git cient

Create a repositony Dewelopers skip this step.

Clone a repository

Create a branch

Compie code

Add and commit changes

P ush changes o the

sener

End

Update and merge
branches

Table 11-1 Procedure

Procedure

Description

Install the
Git client

Install the Git client for your operating system.
e Git for Windows

e Git for macOS X

e Git for Linux

Create a
repository

Create and open a new folder, and run the following command:
git init
A Git repository is created.

Clone a
repository

Run the following command to create a clone of a local
repository:

git clone /path/to/repository

If the repository is on a remote server, run the following

command:
git clone username@host:/path/to/repository

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 184

CodeArts Repo

User Guide

11 More About Git

Procedure Description
Local There are three components in a local repository: working
repository directory, index, and HEAD.
structure e Working directory contains the files that you are working on.
e Index caches changes you have made.
e HEAD points to the latest commit.
Add and Run the following command to add the changes to the index:
commit git add <filename>
changes git add
Run the following command to commit the changes:
git commit -m "Code submission information"
The changes are committed to the HEAD but not to the remote
repository.
Push The changes are in the HEAD of the local repository. Run the
changes following command to push the changes to the remote
repository:
git push origin master
You can replace master with any other branch to be pushed.
If you have not cloned an existing repository, run the following
command to connect the local repository to a remote server
before the push:
git remote add origin <server>
Then push the changes to the added server.
Create a Branches enable you to develop features separately. When a
branch repository is created, the master branch is the main branch by

default. Develop features on other branches and then merge
them to the main branch after the development.

1. Create a branch named feature_x and check out the branch.
git checkout -b feature_x

2. Check out the main branch.
git checkout master

3. Push the main branch to the remote repository. (If the branch
is not pushed, the branch can be seen only in your local
repository.)
git push origin <branch>

4. Delete the created branch.
git branch -d feature_x

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 185

CodeArts Repo
User Guide

11 More About Git

Procedure

Description

Update and
merge
branches

1. Run the following command to update the local repository to

the latest remote commits:

git pull

The remote changes are fetched and merged to your working
directory.

2. Run the following command to merge other branches to the
current branch (for example, the master branch):
git merge <branch>

NOTE
Automatic merges may fail and conflicts occur. In this case, you need
to modify these files to manually merge the conflicts.
3. After the modification, run the following command to add
your changes.
git add <filename>
4. Before the modification, you can run the following command

to compare the source and target branches.
git diff <source_branch> <target_branch>

Create a tag

You are advised to create tags for releases. For example, run the
following command to create a tag named 1.0.0:

git tag 1.0.0 1b2e1d63ff

1b2e1d63ff is the first 10 characters of the commit ID to be
tagged. Run the following command to obtain the commit ID:
git log

You can enter the first several characters of the commit ID as
long as it can distinguish the commit from others.

Replace local
changes

Run the following command to replace the unwanted local
changes:

git checkout -- <filename>

The files in the working directory are replaced by the latest
content in the HEAD. Changes added to the index and new files
are not affected.

To discard all local changes and commits, fetch the latest
commit from the server and reset the local main branch to the

commit.
git fetch origin
git reset --hard origin/master

11.2 Setting Password-Free Access via HTTPS

Background

The username and password are required each time you connect to CodeArts Repo
using the HTTPS protocol. However, Git can help you implement password-free
access with its credential storage. You are advised to install Git 2.5 or a later
version so that the function runs properly. The following describes the
configuration methods on different OSs:

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 186

CodeArts Repo

User Guide 11 More About Git
e Setting Password-Free Access on Windows
e Setting Password-Free Access on macOS
e Setting Password-Free Access on Linux
Prerequisites
e The SSH keys and HTTPS password have been set.
e You have to enter the username and password in CodeArts Repo each time

you use the HTTPS protocol to perform operations such as git clone, git fetch,

git pull, and git push.

Setting Password-Free Access on Windows

The following table describes how to set password-free access on Windows.

Table 11-2 Setting password-free access on Windows

Method Description

Set the HTTPS | 1. Set the Git authentication mode.

password on Open the Git client and run git config --global

the local credential.helper store.

computer 2. Run the Git command to clone or push code for the first

time, and enter the username and password as prompted.

3. Open the .git-credentials file. If the username and
password have been stored locally, the following

information is displayed:
https://username:password@***.*** *** com

Setting Password-Free Access on macOS

Install the osxkeychain tool to implement password-free access.

1.

Check whether the tool has been installed.
git credential -osxkeychain

Test for the cred helper

Usage: git credential -osxkeychain < get|store|erase >

If the following information is displayed, the tool has not been installed.
git: 'credential -osxkeychain' is not a git command. See 'git --help'.

Obtain the installation package.

git credential -osxkeychain

Test for the cred helper

git: 'credential -osxkeychain' is not a git command. See 'git --help'.

curl -s -0\
https://github-media-downloads.s3.amazonaws.com/osx/git-credential-osxkeychain
Download the helper

chmod u+x git-credential-osxkeychain

Fix the permissions on the file so it can be run

Install osxkeychain in the directory where Git is installed.
sudo mv git-credential-osxkeychain\

"$(dirname $(which git))/git-credential-osxkeychain"

Move the helper to the path where git is installed

Password:[enter your password]

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

187

CodeArts Repo
User Guide 11 More About Git

4. Use osxkeychain to set Git to the password-free mode.
git config --global credential.helper osxkeychain
#Set git to use the osxkeychain credential helper

(11 NOTE

The password needs to be entered the first time you perform Git operations. After
that, osxkeychain will manage the username and password, and you do not need to
enter password subsequently.

Setting Password-Free Access on Linux
Linux provides two password-free access modes:

e cache:

- Credentials are cached in memory and cleared after 15 minutes.
git config --global credential.helper cache
#Set git to use the credential memory cache

- Set the expiration time in timeout, in units of seconds.
git config --global credential.helper 'cache --timeout=3600'
Set the cache to timeout after 1 hour (setting is in seconds)

° store:

Credentials are stored in a plain-text file (~/.git-credentials by default) in the
home directory on the disk. The credentials never expire unless you change
the password on the Git server. The content of the git-credentials file is as
follows:

https://username:password@*******+** com

After saving the credentials in the preceding file, run the following command
to implement pass-free access:

git config --global credential.helper store

Troubleshooting

If the message SSL certificate problem: self signed certificate is displayed when
you download code using HTTPS, run the following command on the client:

git config --global http.sslVerify false

11.3 Using the TortoiseGit Client

Generating a PPK File

A PPK file is required for downloading and committing code on the TortoiseGit
client. Assuming that an SSH key pair has been generated on the Git client. The
methods to generate a PPK file are different in the following two scenarios:

e The Public Key Has Been Added to Ssh-key in CodeArts Repo

a. On theStart menu, search for and select PuttyGen.
b. Click Load.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 188

CodeArts Repo
User Guide

11 More About Git

Q PuTTY Key Generator
Eile Key Conyersions Help

Key
No key.

Actions

Generate a public/private key pair
Load an existing private key file
Save the generated key

Parameters

Type of key to generate:
®RsA O D3A

MNumber of bits in a generated key:

(O ECDSA

2aVE PUDIC KEY

(O EdDSA

———

(O S5H-1 (RSA)

c. Select the id_rsa file in the directory where the SSH key pair is stored and

click Open.

d. Click OK and select Save private key.

g PuTTY Key Generator
File Key Conversions

Key
Public key for pasting into Open55H authorized_keys file:

Help

Date modified

sshsa AAAABINzZ
+ps ik fnjD4bJamJ
1/3pMZ75%eXEel7
+XIMmKdewuX/sT
olyha7ldIFD3YEB1

d5u1H
ms2TRg

iRGdvaeZUG S,/ WhexH3dt M5Cjvwwe LIXhkt
NMYZYE525k KBudwrge50alg¥/HzfHOce

N

L4

Key fingerprint: |ssh-rsa e

F%nUoTtDGAumK011m1Cs

Keycomment: | rairumiaREmeas

Key passphrase: |

Corfirm passphrase: |

Actions

Generate a public/private key pair
Load an existing private key file
Save the generated key

Parameters

Type of key to generate:
@ RSA ODsA

Mumber of bits in a generated key:

(O ECDSA

e. Click Yes to generate a PPK file.

Save public key

(O EdDSA

Generate

Load

Save private key

(O SSH-1(R5A)

f. Save the file to the directory where the SSH key pair is stored.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

189

CodeArts Repo

User Guide 11 More About Git

Date modified

ft Publish...

e The Public Key Has Not Been Added to CodeArts Repo

a. On theStart menu, search for and select PuttyGen.

b. Click Generate to generate a key, as shown in the following figure.

& PuTTY Key Generator ? X
File Key Conversions Help

Key
Mo key.

Actions
Generate a public/private key pair | |

Load an existing private key file Load

L
5
i
40
T

Save the generated key Save public key

Parameters

Type of key to generate:
@ RSA (O DsA (O ECDSA (O EdDSA () 55H-1{R54)

Mumber of bits in a generated key: 2048

c. Click Save private key to save the generated key as a PPK file.

2 PuTTY Key Generator ? bt
File Key Conversions Help
Key
Public key for pasting into OpenS5H authorized _keys file:
sshsa AAAABINza ~
+psYik njD4bJam.J iRGdvasZUG S/ WhexH3dt M5Cjvwwe LIXhkt
1/3pMZZ5eXEel7 d5u1H
+¥MmKdewuX/sTE; SNMYZYGE525k KBudwrge500Qg¥ HafHSced
olyha7ldIFD9sYB1 ms2TRg W

Key fingerprint: |ssh-rsa PR PnUoTtDGikum KO11m 1Cs

|
Key comment; | rea-iRR R RERS |
|
|

Key passphrase: |

Corfirm passphrase: |

Actions

Generate a public/private key pair Generate

Load an existing private key file Load

Save the generated key Save public key
Parameters

Type of key to generate:

(® RSA (O DSA (O ECDSA (O EdDSA (0 55H-1 (RSA)
Mumber of bits in a generated key: 2048

d. Click Yes to generate a PPK file.
e. Save the file to the directory where the SSH key pair is stored.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd.

190

CodeArts Repo
User Guide 11 More About Git

Mame

B idr-

ft Publish...

Creating a Git Version Repository

To create a repository for the first time, right-click in an empty directory on the
local computer and choose Git Create repository here....

View b
Sort by >
Group by >
Refresh

Custornize this folder...

Paste

Paste shortcut

Undo Rename Ctrl+Z
Git GUI Here

Git Bash Here

Give access to 2

@ Git Clone...

[T Git Create repository here...

2 TortoiseGit 2
Mew ?
Properties

Cloning a Version Repository

1. Open the local Git repository directory (where the repository is created) and
choose TortoiseGit > Pull on the right-click menu.

2. Click Manage Remotes.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 191

CodeArts Repo
User Guide 11 More About Git

& Ch\Users il 2T - Pull - TortoiseGit p 4

Remote

() Arbitrary URL:

Remote Branch: | master B

Options
|:|§quash [INe Commit

[Mo Fast Forward [] Fast Forward Only
[m] Tags
[®] Prune

[AutoLoad Putty Key Manage Remotes

[Launch Rebase After Fetch

3. Specify the URL, select the PPK file for the Putty field, and click OK.

v - # General & Remote
() Context Menu
(& Context Menu 2 Remote:
£¥ Dialogs 1
£ Dislogs2 lorign_________|
£¥ Dialogs 3
& Colors1 URL: hitp:/ TR R PR
& Colors2 . I
’ Colors 3 Push URL: http:/
8 Alternative editor
v 4P Git Putty Key:
& Remote
€ Credential Tags: Reachable ~ | [JPush Default
v - § Hook Scripts
-@ Issue Tracker Integration [®] Prune
& lIssue Tracker Config
v {0 lcon Overlays
? lcon Set

Remote: origin Rename

{5 Overlay Handlers
- @ hevon
@ Email
v @ Diff Viewer Remove
Y Merge Tool
4 Saved Data
4, TortoiseGitBlame
2 TortoiseGitUDiff
Advanced

oK Cancel Appl Help

Push Version Repository
1. Configure the username, email address, and signature key ID (PPK file).
2. Right-click in the blank area and choose TortoiseGit > setting.
3. Select Git, and set Name and Email.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 192

CodeArts Repo
User Guide

11 More About Git

HEGIT - Settings - TortoiseGit x

v . ¥ General
.45 Context Menu
Context Menu 2
Dialogs 1
Dialogs 2
Dialogs 3
Colors 1
Colors 2
(¥ Colors3
i Atternative editor
v 1} Git
. Remote
.43 Credential
~ -8 Hook Scripts
& lssue Tracker Integration
@ lssue Tracker Config
~ g lcon Overlays
& Icon Set
“.-{g5) Overlay Handlers
~ - Network
(@ Emnail
v -, Diff Viewer
y Merge Tool
) Saved Data
fp. TortoiseGitBlame
- TortoiseGitUDiff
¥ Advanced

4 Git

Config source

@) Effective | OlLocal

<< (O Global

<< () System

User Info

Name:

Email: m

Signing key ID: ‘

inherit

inherit

inherit

Auto CrLf convert

AutoCrlf: true SafeCrLf:

QuotePath

Save to: Local

Edit local .git/config
Edit .tgitconfig

View effective config

Edit global .gitconfig

Prune

Edit systemwide gitconfig

(10 NOTE

If the push fails, run the following script to locate the fault and send the git.log file

OK

| | Cancel Apph

generated to the technical support:

#!/bin/bash

this script will collect some logs for Coding.net
how to use

first enter your git reposiztory
then execute this bash, please make sure you have correct rights
echo "## git version ###########H##A###" >> git.log
git version >> git.log
echo "## ping ####H#HBHRHRHHHHH#HH#HRH#A#H" >> git.log
ping code******xikrx com >> git.log
echo "## curl MR com ###########" >> git.log
curl -v https://code********kxkdk com >> git.log 2>&1

echo "## ssh -vT git@***** << com ##############" >> git.log
ssh -vT git@*********+*+* com >> git.log 2>&1
echo "## git pull ##########A###" >> gitlog

GIT_CURL_VERBOSE=1 GIT_TRACE=1 GIT_TRACE_PACKET=1 git pull >> git.log 2>&1

11.4 Use Cases on the Git Client

11.4.1 Uploading and Downloading Code

1.

Help

Ensure that the network connection is up and running.
Enter telnet ********ikiik com 22 on the client.

If command not found is displayed, the network cannot access CodeArts

Repo.

Check if the client is trusted by CodeArts Repo.

If the system prompts you to enter a password when you pull or push code,
check whether the public key has been added to CodeArts Repo.

If the public key has been added, run $ ssh -vT git@************* com to check

whether the trust relationship is established.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

CodeArts Repo
User Guide

11 More About Git

If the following information is displayed, the trust relationship is established.

Reque ng r
Entering int
to GitLab, 1
client_inp
client

channel

3. If the fingerprints of both parties are changed after the trust relationship is

established, a public key authentication error is reported during commit
attempts. In this case, perform the following operations:

a. Delete the lines related to *******¥***+%* com from the ~/.ssh/known_hosts
file.

b. Enter push, pull, or ssh -T git@******ssstsss com,
c. Enter yes when asked whether to trust the public key of the server.

4. The code download is successful. If the target branch of the push is protected,

the code fails to be pushed.

5. Contact the repository administrator to unprotect the branch. The code can
be pushed after the protection is canceled.

11.4.2 Committing Letter Case Changes in File Names to the

Server

Background

Procedure

When changes are made to the case of a file name and pushed to the server, the
server does not recognize the changes.

For example, a file named AppTest.java is renamed as apptest.java on the Git
client. When the change is pushed to the server, the name of the file in the remote
server is still AppTest.java.

Run the following commands in sequence:

git mv --force AppTest.java apptest.java
git add apptest.java

git commit -m "rename"

git push origin XXX (branch name)

11.4.3 Setting the Line Ending Conversion

Background

Different operating systems may use different line endings. Therefore, if you open
a file created in an operating system different from yours, the file may be
displayed incorrectly. This problem may also occur when you use version control
systems.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 194

CodeArts Repo
User Guide

11 More About Git

Procedure

1. (Optional) By default, core.autocrlf is set to false in Git. Perform the

following operations to enable Git to identify and convert the line endings for
text files:

- On Windows

Set core.autocrlf to true. All text files in the local repository use LF line
endings whereas those checked out to the working directory use CRLF
line endings.

- On Linux

Set core.autocrlf to input. When files are imported to the local
repository, Git auto-converts line endings from CRLF to LF. No conversion
is performed when files are checked out from the local repository to the
working directory.

2. Set core.autocrlf to true to enable auto-conversion of line endings.

git config --global core.autocrlf true

11.4.4 Committing Hidden Files

Run git add.

(1 NOTE

e Do not use git add *, which instructs Git to ignore the hidden files.

e The file and directory names cannot contain special characters.

11.4.5 Pushing a File That Has Been Changed on the Server

Background

Procedure

A file push on the Git client will fail if the file is modified on the server, and the
following information is displayed.

git.exe push --progress "origin™ master:master

To git

1.8 com: fdae56335080433aB8298a5c72aed2feé/ . _______..git
! [rejected] master -> master (fetch first)
error: failed to push some refs to '"git@H

% com: £daeS6335080433a8298a5c72aed2fed/ pepeeem— . glit”

: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by ancther repository pushing
hint: te the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

1. Pull the latest code from the server.
git pull origin XXX (branch name)

2. Modify and push the code.
git push origin XXX (branch name)

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 195

CodeArts Repo
User Guide 11 More About Git

11.5 Common Git Commands

Background

e Gitis a free and open-source distributed version control system. It can
manage projects of any size in an agile and efficient manner.

e With Git, you can clone a complete Git repository (including code and version
information) from a server to a local computer, create branches, modify and
commit code, and merge branches.

Commonly Used Commands

The following table describes the functions, formats, parameters, and examples of
common Git commands.

Table 11-3 Common Git commands

Comm | Funct | Format Par | Example
and ion ame
ter

ssh- Gener | ssh-keygen - | ema | Obtain the key file id_rsa.pub from
keygen |atea |trsa-C il: the .ssh folder in drive C.

-t rsa key [email] indi ssh-keygen -t rsa -C

cate | "devcloud_key01@XXX.com"

san

ema
il
addr
ess.

git Creat | git branch new | Create a branch:
branch | e a [new bra | 4it branch newbranch
branc | branchname] | nch
me:
indi
cate

the
nam
e of
the
new
bran
ch.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 196

CodeArts Repo

User Guide 11 More About Git
Comm | Funct | Format Par | Example
and ion ame
ter
git Delet | git branch -D | new | Delete a local branch:
branch | ea [new bra | it branch -D newbranch
-D branc | branchname] | nch .
h na Deletg a branch in the remote
me: repository:
indi | git branch -rd origin/newbranch
caté | Remove branches that have been
ih deleted in the remote repository:
e . .
nam | 9it remote prune origin
e of
the
new
bran
ch.
gitadd | Add a | git add file | Add a file to the index:
Ii}:e to | [filename] Na | git add filename
e me:
index indi Add a‘ll modified and new files to the
cate index:
S git add .
the
nam
e of
the
file
to
be
add
ed.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

197

CodeArts Repo
User Guide

11 More About Git

Comm
and

Funct
ion

Format

Par
ame
ter

Example

gitrm

Delet
ea
local
direct
ory or
file

gitrm
[filename]

file
na
me:
indi
cate

the
nam
e of
the
file
or
dire
ctor
y to
be
dele
ted.

Delete a file or a directory:
git rm filename

git
clone

Clone
a
remot
e
reposi
tory

git clone
[VersionAddr
ess]

Vers
ion
Add
ress:
indi
cate

the
URL

the
rem
ote
repo
sitor

Clone a jQuery repository

git clone https://github.com/jquery/
jquery.git

A directory is generated on the local
computer. The name of the directory
is the same as that of the cloned
repository.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 198

CodeArts Repo
User Guide

11 More About Git

Comm
and

Funct
ion

Format

Par
ame
ter

Example

git pull

Pull
the
branc
hin
the
remot
e
reposi
tory
to the
local
comp
uter
and
merg
eit
with a
specifi
ed
local
branc
h

git pull
[RemoteHost
name]
[RemoteBran
chname]:
[LocalBranch
name]

Pull the next branch from the remote
repository and merge it with the local
master branch.

git pull origin next:master

git diff

Comp
ares
files,
branc
hes,
direct
ories,
or
versio
ns

git diff

Compare the current branch with the
master branch:

git diff master

git
commit

Com
mit
files

git commit

Add a commit message:
git commit -m "commit message"

git
push

Push
files
to the
remot
e
reposi
tory

git push
[RemoteHost
name]
[LocalBranch
name]
[RemoteBran
chname]

If the remote branch name is not
specified, the local branch is pushed to
the remote branch that it tracked (The
two branches usually share a name).
Such a remote branch will be created
if it does not exist.

git push origin master

The local master branch is pushed to
the master branch in the remote
repository. If the latter does not exist,
it will be created.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

199

CodeArts Repo

User Guide 11 More About Git
Comm | Funct | Format Par | Example
and ion ame
ter
git Merg | git merge bra | Assuming that the current branch is
merge |e [branch] nch: | the develop branch. The latest commit
branc indi | to the master branch is merged to the
hes cate | develop branch.
S .
the git merge master
nam
e of
the
sour
ce
bran
ch
git Check | git checkout | bran | Check out the master branch:
checko |outa | [branchname | chn git checkout master
ut branc |] ame
h :
indi
cate
s
the
nam
e of
the
bran
ch
to
be
swit
che
d to.
git log | List git log - List all logs:
the git log --all
log
git Check | git status - git status
status the
status
git grep | Searc | git grep - Check whether there is any character
h for string containing hello:
a git grep "hello"
chara
cter
string

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

200

CodeArts Repo

User Guide 11 More About Git
Comm | Funct | Format Par | Example
and ion ame
ter
git Displa | git show - e git show v1
show y The revisions attached with the v1
object tag are displayed.
sor. e git show HEAD
revisi Display the last commit of the
ons current branch.
e git show HEADA
Display the first parent of the last
commit of the current branch.
e git show HEAD~4
Display the ancestor four
generations prior to the last
commit of the current branch.
git Com | git stash - e git stash
stash mand Saves and restores the work
s progress.
relate e git stash list
dto Lists all stashes.
stash .
es e git stash pop
Restore the latest stash and
remove it from the stash list.
e git stash apply
Restore the latest stash but not
remove it from the stash list.
e git stash clear
Clear all stashes.
git ls- View | git Is-files - e git Is-files -d
files files View deleted files
e git Is-files -d |xargs git checkout
Restore deleted files

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd.

201

CodeArts Repo

User Guide 11 More About Git
Comm | Funct | Format Par | Example
and ion ame
ter
git Perfor | git remote - e git push origin master:newbranch
remote | m Create the master branch in the
opera remote repository and push
tions changes to it.
on e git remote add newbranch
the Create the master branch in the
remot remote repository and push
e changes to it.
reposi)
tory e git remote show

List the number of remote
repositories

e git remote rm newbranch
Delete a new branch from the
remote repository

e git remote update
Update branches of all remote
repositories

11.6 Using Git

Background

LFS

e Git Large File Storage (LFS) is supported on CodeArts Repo. It stores large file
such as music, images, and videos outside a Git repository while users can still
easily perform operations on these files as if they were within the repository.
The Git extension allows more repository space and faster repository cloning,
and reduces the impact of large files on the Git performance.

e If the size of a file to be uploaded exceeds 200 MB, use Git LFS.
e Get started with Git LFS:
Installing Git LFS

Installing Git LFS

Configuring File Tracking
Committing Large Files

Cloning a Remote Repository Containing Git LFS Files
More About Git LFS

The following table describes the installation on different operating systems.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 202

CodeArts Repo
User Guide 11 More About Git

Table 11-4 Installing Git LFS

Operatin | Installation Method
g System

Windows | Download and install Git 1.8.5 or a later version. Run the following

command in the CLI:
git lfs install

Linux Download the installation package from PackageCloud for your
operating system and CPU architecture.

Decompress the installation package, run the install.sh script to
install the software, and then run the following command to check

whether the installation is successful:
git lfs version

macOS Install the Homebrew software package management tool, and run

the following commands:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

$ brew install git-Ifs

$ git lfs install

Configuring File Tracking

This section describes how to configure file tracking.

Table 11-5 Configuring file tracking

Scenarios | Method

Track Run the following command:
all .psd git lfs track "*.psd"
files

Track a file | Run the following command:
git lfs track "logo.png"

View Run git Ifs track or view the .gitattributes file.
tracked $ git lfs track
files Listing tracked patterns
*.png (.gitattributes)

*.pptx (.gitattributes)
$ cat .gitattributes
*.png filter=Ifs diff=Ifs merge=Ifs -text
* pptx filter=Ifs diff=Ifs merge=Ifs -text

Committing Large Files

The .gitattributes file should be pushed to the repository along with the large
files. After the push, run git lfs ls-files to view the list of track files.

$ git push origin master

Git LFS: (2 of 2 files) 12.58 MB / 12.58 MB
Counting objects: 2, done.

Delta compression using up to 8 threads.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 203

https://github.com/git-lfs/git-lfs/releases

CodeArts Repo
User Guide 11 More About Git

Compressing objects: 100% (5/5), done.

Writing objects: 100% (5/5), 548 bytes | 0 bytes/s, done.
Total 5 (delta 1), reused 0 (delta 0)

To <URL>

<SHA_ID1>.<SHA_ID2> master -> master

$ git fs [s-files

61758d79c4 * <FILE_NAME_1>

a227019fde * <FILE_NAME_2>

Cloning a Remote Repository Containing Git LFS Files

Run git Ifs clone to clone a remote repository that contains Git LFS files to the
local computer.

$ git lfs clone <URL>

Cloning into '<dirname>'

remote: Counting objects: 16,done.

remote: Compressing objects: 100% (12/12),done.
remote: Total 16 (delta 3), reused 9 (delta 1)
Receiving objects: 100% (16/16),done.

Resolving deltas: 100% (3/3),done.

Checking connectively...done.

Git LFS: (4 of 4 files) 0B/ 100 B

More About Git LFS
For details, see the https://git-lfs.github.com.

11.7 Git Workflows

11.7.1 Overview

Create a Git workflow or branching policy that works best on your development
scenarios for effective version control, project process management, and team
collaboration.

There are four common Git workflows. The following sections describe their
processes, advantages, disadvantages, and some usage tips.

e Centralized workflow

e Feature branch workflow

e GitFlow (recommended)

e Forking workflow

Development teams can integrate CodeArts Repo and the workflow that suits
them best to efficiently manage code and secure code. This enables them to focus

more on service development to achieve continuous integration and delivery, and
fast iteration.

11.7.2 Centralized Workflow

The centralized workflow is suited to a development team that comprises around
5 members or has just migrated from SVN to Git. There is only one main branch
called master by default (trunk in SVN), which is the single entry point of changes.
However, this workflow is not recommended for teams who want to enjoy the
benefits of Git and team collaboration.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 204

https://git-lfs.github.com/

CodeArts Repo

User Guide 11 More About Git
Process
Developers clone the master branch from the central repository to their local
computers, make changes to the code, and push changes to the remote master
branch.
Advantages
No branch interaction is involved.
Disadvantages

e Merge conflicts are frequent when the size of a development team is more
than 10 members. Much time is spent on conflict resolution.

e The master branch is unstable due to frequent pushes to it, making it difficult
to conduct integration tests.

Tips: Avoiding Conflicts and Unreadable Commit History

Before developing a new feature, developers must synchronize the local repository
to the central one so that they can work on the latest version. After the
development is complete, fetch updates from the central repository before
rebasing their own commits. In this way, the commits are applied on top of
changes that have been made and pushed to the central repository by other
developers. The commit history is linear and clear. The following figure shows an
example of the workflow.

Central repository

Local repository of developer A \

Developers A and B pull code from the central repository at the same time.
Developer A completes the work and pushes it to the central repository.

3. When ready to push commits, developer B needs to first run git pull -rebase
to apply commits on top of the changes made by developer A.

4. Developer B pushes the code to the central repository.

11.7.3 Branch Development Workflow

The core of the feature branch workflow is that every feature should be developed
on a separate branch pulled off the master branch. This creates a work silo for
every developer, ensures a stable master branch, and encourages team
collaboration.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 205

CodeArts Repo
User Guide 11 More About Git

Process

Before developing a new feature, each developer should pull a new branch from
the master branch and give it a descriptive name, for example, video-output or
issue-#1061, to clearly state its purpose. By pushing local feature branches to the
central repository, developers can share their code with each other without
merging code into the master branch.

Advantages
e Developers can create merge requests to have their code reviewed before
merge.
e Pushes to the master branch are less frequent.
Disadvantages

Only the master branch is used to incorporate changes. The instability of the
branch is further increased in large-scale development projects.

11.7.4 GitFlow

GitFlow is commonly seen in large-scale development projects. Each branch is
dedicated to a specific purpose and policies are made to regulate the interaction
between branches. The following figure shows the process of GitFlow.

Feature ®--0@]

Develop @ @ @ @ @
Release ® -0 ® -9

HotFix

Master

Process
e Master branch

The master branch is the production branch where code is ready to deploy. It
is the most stable branch because changes cannot be directly pushed to it.
Developers can only merge other branches to the master branch. It is often
set as a protected branch by default, on which only the project maintainer can
operate.

e Hotfix branch

It is a temporary branch created off the master branch for fixing urgent bugs
in a live production version. After the bug is fixed, the hotfix branch gets

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 206

CodeArts Repo
User Guide 11 More About Git

merged into the master branch and tagged with a version number. The bug
fix also needs to be merged to the develop branch.

e Develop branch

A develop branch is pulled from the master branch and used to merge
features. It contains all the code ready to release for integration and system
testing.

e Release branch

When a new release is coming up, developers create a release branch from
the develop branch for release preparations, such as fixing minor bugs and
producing documents. Adding new features is not allowed. They should be
merged into the develop branch and wait for the next release. When the
preparation is complete, the release branch is merged into the master branch
and the commit is tagged with a version number. The changes made in the
release branch also need to be merged to the develop branch.

e Feature branch

Feature branches are pulled from the develop branch for feature
development. When the development is complete, they are merged into the
develop branch. Feature branches do not interact with the master branch.

Developers add new features in either of the following ways:

e Integrate features after reviewed by a dedicated approver.

a. Developers push feature branches to the central repository in CodeArts
Repo.

b. Developers then create merge requests for merging the feature branches
into the develop branch, and assign the requests to the reviewer.

(11 NOTE

CodeArts Repo supports MRs. You can choose source branches and target
branches. Only repository administrators (project managers, repository creators,
and developers granted with repository management permissions) can accept
MRs.
c. The approver reviews the merge requests. If the requests are approved,
the feature branches are merged into the develop branch and deleted.
Otherwise, the approver should explain the reasons of rejections.

e Integrate features after self-reviews.

a. Developers merge feature branches to the develop branch in the local
repository and delete the feature branches.

b. The local develop branch is then pushed to the central repository in
CodeArts Repo.

Advantages

e With a branch dedicated for release preparation, a development team can
develop new features for a future release on the develop branch while
improving the version for the upcoming release. Release is visualized, which
means team members can have a clear view of the release status in commit
graphs.

e Hotfix branches, which can be seen as temporary release branches created off
the master branch, enable development teams to fix urgent bugs without

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 207

CodeArts Repo
User Guide 11 More About Git

interrupting other works. You do not have to wait until next release but can
quickly deploy fixes to the production version.

e Effective multi-branch mechanism allows for organized development process
especially for large-scale projects.

e This workflow is more in line with the DevOps philosophies.

Disadvantages
e High learning thresholds.

e Impact will be greater if development teams do not comply with their
specified workflow policies.

11.7.5 Forking Workflow

The forking workflow is suitable for outsourcing, crowdsourcing, crowdfunding,
and open source projects. One of the features that distinguish this workflow is
that every contracting developer has a personal public repository, which is forked
from the project public repository. Developers can perform operations on the forks
without the need of being authorized by the project maintainer. The following
figure shows the process of the forking workflow.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 208

CodeArts Repo
User Guide 11 More About Git

Push

Project public repository Project maintainer

Merge request

Personal publit repository

L o e e o o o] b — — = o

git clone

Contributor Contributor Contributor

Process

1. Developers fork the project public repository to create personal public ones.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 209

CodeArts Repo

User Guide 11 More About Git
2. The personal public repositories are cloned to their local computers for
development.
3. After the development is complete, developers push changes to their personal
public repositories.
4. Developers file merge requests to the project maintainer for merge to the
project public repository.
5. The project maintainer pulls changes to the local computer and reviews the
code. If the code is approved, it is pushed to the project public repository.
{11 NOTE
If the code written by a developer is not approved and therefore, not merged to the project
public repository, other developers can still pull the code from the personal public
repository of the developer for references.
Advantages
e Code collaboration is easier. Developers can share their code by pushing it to
their personal public repositories for others to pull, unlike some workflows
where developers cannot see others' work until it is merged into the project
repository.
e Project maintainers do not have to grant permissions on project public
repositories to every contributor.
e Merge requests serve as an important guard for code security.
e The three workflows introduced previously can be incorporated into the
forking workflow based on project requirements.
Disadvantages

It takes more steps and time before the code of developers gets merged into the
project repository.

Issue 01 (2023-09-05)

Copyright © Huawei Technologies Co., Ltd. 210

	Contents
	1 Overview
	2 Git Installation and Configuration
	2.1 Installing and Configuring Git
	2.2 Installing Git Bash for Windows
	2.3 Installing TortoiseGit for Windows
	2.4 Installing Git for Linux
	2.5 Installing Git for macOS

	3 Setting SSH Key or HTTPS Password for CodeArts Repo Repository
	3.1 Overview
	3.2 SSH Keys
	3.3 HTTPS Password

	4 Migrating Data to CodeArts Repo
	4.1 Overview
	4.2 Migrating an SVN Repository to CodeArts Repo
	4.3 Importing a Remote Git Repository to CodeArts Repo
	4.4 Uploading Local Code to CodeArts Repo

	5 Creating a CodeArts Repo Repository
	5.1 Overview
	5.2 Creating an Empty Repository
	5.3 Creating a Repository Using a Template
	5.4 Importing an External Repository
	5.5 Forking a Repository

	6 Associating the CodeArts Repo Repository
	7 Cloning or Downloading Code from CodeArts Repo to a Local PC
	7.1 Overview
	7.2 Using SSH to Clone Code from CodeArts Repo to a Local PC
	7.3 Using HTTPS to Clone Code from CodeArts Repo to a Local Computer
	7.4 Downloading a Code Package on a Browser

	8 Using CodeArts Repo
	8.1 Viewing the Repository List
	8.2 Viewing Repository Details
	8.3 Viewing Repository Homepage
	8.4 Managing Code Files
	8.4.1 Managing Files
	8.4.2 Managing Commits
	8.4.3 Managing Branches
	8.4.4 Managing Tags
	8.4.5 Managing Comparison

	8.5 Managing MRs
	8.5.1 Managing MRs
	8.5.2 Resolving Code Conflicts in an MR
	8.5.3 Detailed Description of Review Comments Gate
	8.5.4 Detailed Description of Pipeline Gate
	8.5.5 Detailed Description of E2E Ticket Number Association Gate
	8.5.6 Detailed Description of Review Gate
	8.5.7 Detailed Description of Approval Gate

	8.6 Viewing Review Records of a Repository
	8.7 Viewing Associated Work Items
	8.7.1 Introduction
	8.7.2 Commit Association

	8.8 Viewing Repository Statistics
	8.9 Viewing Activities
	8.10 Managing Repository Members
	8.10.1 IAM Users, Project Members, and Repository Members
	8.10.2 Configuring Member Management
	8.10.3 Repository Member Permissions

	9 Configuring CodeArts Repo
	9.1 General Settings
	9.1.1 Repository Information
	9.1.2 Notifications

	9.2 Repository Management
	9.2.1 Repositories
	9.2.2 Space Freeing
	9.2.3 Synchronization
	9.2.4 Submodules
	9.2.5 Repository Backup

	9.3 Policy Settings
	9.3.1 Protected Branches
	9.3.2 Protected Tags
	9.3.3 Commit Rules
	9.3.4 Merge Requests

	9.4 Service Integration
	9.4.1 E2E Settings
	9.4.2 Webhooks

	9.5 Security Management
	9.5.1 Deploy Keys
	9.5.2 IP Address Whitelists
	9.5.3 Risky Operations
	9.5.4 Watermarks
	9.5.5 Repository Locking
	9.5.6 Audit Logs

	10 Submitting Code to the CodeArts Repo
	10.1 Creating a Commit
	10.2 Transmitting and Storing a File in Encryption Mode
	10.3 Viewing Commit History
	10.4 Pushing Code to CodeArts Repo Using Eclipse

	11 More About Git
	11.1 Using the Git Client
	11.2 Setting Password-Free Access via HTTPS
	11.3 Using the TortoiseGit Client
	11.4 Use Cases on the Git Client
	11.4.1 Uploading and Downloading Code
	11.4.2 Committing Letter Case Changes in File Names to the Server
	11.4.3 Setting the Line Ending Conversion
	11.4.4 Committing Hidden Files
	11.4.5 Pushing a File That Has Been Changed on the Server

	11.5 Common Git Commands
	11.6 Using Git LFS
	11.7 Git Workflows
	11.7.1 Overview
	11.7.2 Centralized Workflow
	11.7.3 Branch Development Workflow
	11.7.4 GitFlow
	11.7.5 Forking Workflow

